RESUMEN
Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.
Asunto(s)
Forma de la Célula , Matriz Extracelular/metabolismo , Glicocálix/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animales , Línea Celular , Matriz Extracelular/genética , Glicocálix/genética , Caballos , Humanos , Glicoproteínas de Membrana/genética , Mucinas/genéticaRESUMEN
CCCTC-binding factor (CTCF) and cohesin play critical roles in organizing mammalian genomes into topologically associating domains (TADs). Here, by combining genetic engineering with quantitative super-resolution stimulated emission depletion (STED) microscopy, we demonstrate that in living cells, CTCF forms clusters typically containing 2-8 molecules. A fraction of CTCF clusters, enriched for those with ≥3 molecules, are coupled with cohesin complexes with a characteristic physical distance suggestive of a defined molecular interaction. Acute degradation of the cohesin unloader WAPL or transcriptional inhibition (TI) result in increased CTCF clustering. Furthermore, the effect of TI on CTCF clusters is alleviated by the acute loss of the cohesin subunit SMC3. Our study provides quantitative characterization of CTCF clusters in living cells, uncovers the opposing effects of cohesin and transcription on CTCF clustering, and highlights the power of quantitative super-resolution microscopy as a tool to bridge the gap between biochemical and genomic methodologies in chromatin research.
Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias/citología , Microscopía Fluorescente/métodos , Proteínas/metabolismo , Transcripción Genética , Animales , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas de los Mamíferos , Células Madre Embrionarias/metabolismo , Sitios Genéticos , Genoma , Procesamiento de Imagen Asistido por Computador , Ratones , Proteínas/genética , CohesinasRESUMEN
The development of many quantum optical technologies depends on the availability of single quantum emitters with near-perfect coherence. Systematic improvement is limited by a lack of understanding of the microscopic energy flow at the single-emitter level and ultrafast timescales. Here we utilize a combination of fluorescence correlation spectroscopy and ultrafast spectroscopy to capture the sample-averaged dynamics of defects with single-particle sensitivity. We employ this approach to study heterogeneous emitters in two-dimensional hexagonal boron nitride. From milliseconds to nanoseconds, the translational, shelving, rotational and antibunching features are disentangled in time, which quantifies the normalized two-photon emission quantum yield. Leveraging the femtosecond resolution of this technique, we visualize electron-phonon coupling and discover the acceleration of polaronic formation on multi-electron excitation. Corroborated with theory, this translates to the photon fidelity characterization of cascaded emission efficiency and decoherence time. Our work provides a framework for ultrafast spectroscopy in heterogeneous emitters, opening new avenues of extreme-scale characterization for quantum applications.
RESUMEN
Super-resolved cryogenic correlative light and electron microscopy is a powerful approach which combines the single-molecule specificity and sensitivity of fluorescence imaging with the nanoscale resolution of cryogenic electron tomography. Key to this method is active control over the emissive state of fluorescent labels to ensure sufficient sparsity to localize individual emitters. Recent work has identified fluorescent proteins (FPs) that photoactivate or photoswitch efficiently at cryogenic temperatures, but long on-times due to reduced quantum yield of photobleaching remain a challenge for imaging structures with a high density of localizations. In this work, we explore the photophysical properties of the red photoactivatable FP PAmKate and identify a 2-color process leading to enhanced turn-off of active emitters, improving localization rate. Specifically, after excitation of ground state molecules, we find that a transient state forms with a lifetime of â¼2 ms under cryogenic conditions, which can be bleached by exposure to a second wavelength. We measure the response of the transient state to different wavelengths, demonstrate how this mechanism can be used to improve imaging, and provide a blueprint for the study of other FPs at cryogenic temperatures.
Asunto(s)
Imagen Individual de Molécula , Imagen Individual de Molécula/métodos , Proteínas Luminiscentes/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Microscopía por CrioelectrónRESUMEN
Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , División Celular Asimétrica , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/fisiología , Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Endopeptidasa Clp/metabolismo , Multimerización de Proteína , ProteolisisRESUMEN
Glyco-immune checkpoint receptors, molecules that inhibit immune cell activity following binding to glycosylated cell-surface antigens, are emerging as attractive targets for cancer immunotherapy. Defining biologically relevant ligands that bind and activate such receptors, however, has historically been a significant challenge. Here, we present a CRISPRi genomic screening strategy that allowed unbiased identification of the key genes required for cell-surface presentation of glycan ligands on leukemia cells that bind the glyco-immune checkpoint receptors Siglec-7 and Siglec-9. This approach revealed a selective interaction between Siglec-7 and the mucin-type glycoprotein CD43. Further work identified a specific N-terminal glycopeptide region of CD43 containing clusters of disialylated O-glycan tetrasaccharides that form specific Siglec-7 binding motifs. Knockout or blockade of CD43 in leukemia cells relieves Siglec-7-mediated inhibition of immune killing activity. This work identifies a potential target for immune checkpoint blockade therapy and represents a generalizable approach to dissection of glycan-receptor interactions in living cells.
Asunto(s)
Antígenos de Diferenciación Mielomonocítica/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma Humano , Lectinas/metabolismo , Polisacáridos/metabolismo , Secuencias de Aminoácidos , Antígenos de Diferenciación Mielomonocítica/química , Línea Celular Tumoral , Membrana Celular/metabolismo , Glicopéptidos/metabolismo , Humanos , Sinapsis Inmunológicas/metabolismo , Células Asesinas Naturales/metabolismo , Lectinas/química , Leucosialina/química , Leucosialina/metabolismo , Ligandos , Unión ProteicaRESUMEN
Bacterial replication origins move towards opposite ends of the cell during DNA segregation. We have identified a proline-rich polar protein, PopZ, required to anchor the separated Caulobacter crescentus chromosome origins at the cell poles, a function that is essential for maintaining chromosome organization and normal cell division. PopZ interacts directly with the ParB protein bound to specific DNA sequences near the replication origin. As the origin/ParB complex is being replicated and moved across the cell, PopZ accumulates at the cell pole and tethers the origin in place upon arrival. The polar accumulation of PopZ occurs by a diffusion/capture mechanism that requires the MreB cytoskeleton. High molecular weight oligomers of PopZ assemble in vitro into a filamentous network with trimer junctions, suggesting that the PopZ network and ParB-bound DNA interact in an adhesive complex, fixing the chromosome origin at the cell pole.
Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , Cromosomas Bacterianos/metabolismo , Origen de Réplica , Caulobacter crescentus/genética , Replicación del ADNRESUMEN
Point Spread Function (PSF) engineering is an effective method to increase the sensitivity of single-molecule fluorescence images to specific parameters. Classical phase mask optimization approaches have enabled the creation of new PSFs that can achieve, for example, localization precision of a few nanometers axially over a capture range of several microns with bright emitters. However, for complex high-dimensional optimization problems, classical approaches are difficult to implement and can be very time-consuming for computation. The advent of deep learning methods and their application to single-molecule imaging has provided a way to solve these problems. Here, we propose to combine PSF engineering and deep learning approaches to obtain both an optimized phase mask and a neural network structure to obtain the 3D position and 3D orientation of fixed fluorescent molecules. Our approach allows us to obtain an axial localization precision around 30 nanometers, as well as an orientation precision around 5 degrees for orientations and positions over a one micron depth range for a signal-to-noise ratio consistent with what is typical in single-molecule cellular imaging experiments.
RESUMEN
Background fluorescence, especially when it exhibits undesired spatial features, is a primary factor for reduced image quality in optical microscopy. Structured background is particularly detrimental when analyzing single-molecule images for 3-dimensional localization microscopy or single-molecule tracking. Here, we introduce BGnet, a deep neural network with a U-net-type architecture, as a general method to rapidly estimate the background underlying the image of a point source with excellent accuracy, even when point-spread function (PSF) engineering is in use to create complex PSF shapes. We trained BGnet to extract the background from images of various PSFs and show that the identification is accurate for a wide range of different interfering background structures constructed from many spatial frequencies. Furthermore, we demonstrate that the obtained background-corrected PSF images, for both simulated and experimental data, lead to a substantial improvement in localization precision. Finally, we verify that structured background estimation with BGnet results in higher quality of superresolution reconstructions of biological structures.
Asunto(s)
Imagenología Tridimensional/métodos , Redes Neurales de la Computación , Imagen Individual de Molécula/métodos , Algoritmos , Línea Celular , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Proyectos de InvestigaciónRESUMEN
Superresolution fluorescence microscopy and cryogenic electron tomography (CET) are powerful imaging methods for exploring the subcellular organization of biomolecules. Superresolution fluorescence microscopy based on covalent labeling highlights specific proteins and has sufficient sensitivity to observe single fluorescent molecules, but the reconstructions lack detailed cellular context. CET has molecular-scale resolution but lacks specific and nonperturbative intracellular labeling techniques. Here, we describe an imaging scheme that correlates cryogenic single-molecule fluorescence localizations with CET reconstructions. Our approach achieves single-molecule localizations with an average lateral precision of 9 nm, and a relative registration error between the set of localizations and CET reconstruction of â¼30 nm. We illustrate the workflow by annotating the positions of three proteins in the bacterium Caulobacter crescentus: McpA, PopZ, and SpmX. McpA, which forms a part of the chemoreceptor array, acts as a validation structure by being visible under both imaging modalities. In contrast, PopZ and SpmX cannot be directly identified in CET. While not directly discernable, PopZ fills a region at the cell poles that is devoid of electron-dense ribosomes. We annotate the position of PopZ with single-molecule localizations and confirm its position within the ribosome excluded region. We further use the locations of PopZ to provide context for localizations of SpmX, a low-copy integral membrane protein sequestered by PopZ as part of a signaling pathway that leads to an asymmetric cell division. Our correlative approach reveals that SpmX localizes along one side of the cell pole and its extent closely matches that of the PopZ region.
Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/ultraestructura , Imagen Individual de Molécula/métodos , Proteínas Bacterianas/ultraestructura , Caulobacter crescentus/metabolismo , Tomografía con Microscopio Electrónico/métodos , Microscopía Fluorescente/métodos , Transporte de ProteínasRESUMEN
Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.
Asunto(s)
Acetilgalactosamina/metabolismo , Glicoproteínas/metabolismo , Acetilgalactosamina/química , Regulación Enzimológica de la Expresión Génica , Glicosilación , Humanos , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilgalactosamina/químicaRESUMEN
Super-resolved cryogenic correlative light and electron tomography is an emerging method that provides both the single-molecule sensitivity and specificity of fluorescence imaging, and the molecular scale resolution and detailed cellular context of tomography, all in vitrified cells preserved in their native hydrated state. Technical hurdles that limit these correlative experiments need to be overcome for the full potential of this approach to be realized. Chief among these is sample heating due to optical excitation which leads to devitrification, a phase transition from amorphous to crystalline ice. Here we show that much of this heating is due to the material properties of the support film of the electron microscopy grid, specifically the absorptivity and thermal conductivity. We demonstrate through experiment and simulation that the properties of the standard holey carbon electron microscopy grid lead to substantial heating under optical excitation. In order to avoid devitrification, optical excitation intensities must be kept orders of magnitude lower than the intensities commonly employed in room temperature super-resolution experiments. We further show that the use of metallic films, either holey gold grids, or custom made holey silver grids, alleviate much of this heating. For example, the holey silver grids permit 20× the optical intensities used on the standard holey carbon grids. Super-resolution correlative experiments conducted on holey silver grids under these increased optical excitation intensities have a corresponding increase in the rate of single-molecule fluorescence localizations. This results in an increased density of localizations and improved correlative imaging without deleterious effects from sample heating.
Asunto(s)
Tomografía con Microscopio Electrónico , Plata , InvestigaciónRESUMEN
Cryogenic correlative light and electron microscopy (cryo-CLEM) seeks to leverage orthogonal information present in two powerful imaging modalities. While recent advances in cryogenic electron microscopy (cryo-EM) allow for the visualization and identification of structures within cells at the nanometer scale, information regarding the cellular environment, such as pH, membrane potential, ionic strength, etc., which influences the observed structures remains absent. Fluorescence microscopy can potentially be used to reveal this information when specific labels, known as fluorescent biosensors, are used, but there has been minimal use of such biosensors in cryo-CLEM to date. Here we demonstrate the applicability of one such biosensor, the fluorescent protein roGFP2, for cryo-CLEM experiments. At room temperature, the ratio of roGFP2 emission brightness when excited at 425 nm or 488 nm is known to report on the local redox potential. When samples containing roGFP2 are rapidly cooled to 77 K in a manner compatible with cryo-EM, the ratio of excitation peaks remains a faithful indicator of the redox potential at the time of freezing. Using purified protein in different oxidizing/reducing environments, we generate a calibration curve which can be used to analyze in situ measurements. As a proof-of-principle demonstration, we investigate the oxidation/reduction state within vitrified Caulobacter crescentus cells. The polar organizing protein Z (PopZ) localizes to the polar regions of C. crescentus where it is known to form a distinct microdomain. By expressing an inducible roGFP2-PopZ fusion we visualize individual microdomains in the context of their redox environment.
Asunto(s)
Frío , Electrones , Microscopía por Crioelectrón/métodos , Microscopía Electrónica , Microscopía Fluorescente/métodosRESUMEN
We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.
Asunto(s)
Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Caulobacter crescentus/ultraestructura , Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/instrumentación , Tomografía con Microscopio Electrónico/métodos , Células HEK293 , Humanos , Microscopía Electrónica/instrumentación , Microscopía Fluorescente/instrumentación , Nanotecnología/instrumentación , Nanotecnología/métodos , Imagen Individual de Molécula/instrumentación , Imagen Individual de Molécula/métodos , Fracciones Subcelulares/ultraestructuraRESUMEN
Single-molecule fluorescence spectroscopy allows direct, real-time observation of dynamic photophysical changes in light harvesting complexes. The Anti-Brownian ELectrokinetic (ABEL) trap is one such single-molecule method with useful advantages. This approach is particularly well-suited to make detailed spectroscopic measurements of pigment-protein complexes in a solution phase because it enables extended-duration single-molecule observation by counteracting Brownian motion. This Perspective summarizes recent contributions by the authors and others that have utilized the unique capabilities of the ABEL trap to advance our understanding of phycobiliproteins and the phycobilisome complex, the primary light-harvesting apparatus of cyanobacteria. Monitoring the rich spectroscopic data from these measurements, which include brightness, fluorescence lifetime, polarization, and emission spectra, among other measurable parameters, has provided direct characterization of pigments and energy transfer pathways in the phycobilisome, spanning scales from single pigments and monomeric phycobiliproteins to higher order oligomers and protein-protein interactions of the phycobilisome complex. Importantly, new photophysical states and photodynamics were observed to modulate the flow of energy through the phycobilisome and suggest a previously unknown complexity in phycobilisome light harvesting and energy transport with a possible link to photoadaptive or photoprotective functions in cyanobacteria. Beyond deepening our collective understanding of natural light-harvesting systems, these and future discoveries may serve as inspiration for engineering improved artificial light-harvesting technologies.
Asunto(s)
Cianobacterias , Ficobilisomas , Cianobacterias/metabolismo , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Ficobiliproteínas/metabolismo , Ficobilisomas/metabolismo , Espectrometría de Fluorescencia/métodosRESUMEN
The Hedgehog-signaling pathway is an important target in cancer research and regenerative medicine; yet, on the cellular level, many steps are still poorly understood. Extensive studies of the bulk behavior of the key proteins in the pathway established that during signal transduction they dynamically localize in primary cilia, antenna-like solitary organelles present on most cells. The secreted Hedgehog ligand Sonic Hedgehog (SHH) binds to its receptor Patched1 (PTCH1) in primary cilia, causing its inactivation and delocalization from cilia. At the same time, the transmembrane protein Smoothened (SMO) is released of its inhibition by PTCH1 and accumulates in cilia. We used advanced, single molecule-based microscopy to investigate these processes in live cells. As previously observed for SMO, PTCH1 molecules in cilia predominantly move by diffusion and less frequently by directional transport, and spend a fraction of time confined. After treatment with SHH we observed two major changes in the motional dynamics of PTCH1 in cilia. First, PTCH1 molecules spend more time as confined, and less time freely diffusing. This result could be mimicked by a depletion of cholesterol from cells. Second, after treatment with SHH, but not after cholesterol depletion, the molecules that remain in the diffusive state showed a significant increase in the diffusion coefficient. Therefore, PTCH1 inactivation by SHH changes the diffusive motion of PTCH1, possibly by modifying the membrane microenvironment in which PTCH1 resides.
Asunto(s)
Colesterol/metabolismo , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Animales , Rastreo Celular , Ratones , Transducción de Señal , Receptor Smoothened/metabolismoRESUMEN
The cell cycle-regulated methylation state of Caulobacter DNA mediates the temporal control of transcriptional activation of several key regulatory proteins. Temporally controlled synthesis of the CcrM DNA methyltransferase and Lon-mediated proteolysis restrict CcrM to a specific time in the cell cycle, thereby allowing the maintenance of the hemimethylated state of the chromosome during the progression of DNA replication. We determined that a chromosomal DNA-based platform stimulates CcrM degradation by Lon and that the CcrM C terminus both binds to its DNA substrate and is recognized by the Lon protease. Upon asymmetric cell division, swarmer and stalked progeny cells employ distinct mechanisms to control active CcrM. In progeny swarmer cells, CcrM is completely degraded by Lon before its differentiation into a replication-competent stalked cell later in the cell cycle. In progeny stalked cells, however, accumulated CcrM that has not been degraded before the immediate initiation of DNA replication is sequestered to the cell pole. Single-molecule imaging demonstrated physical anticorrelation between sequestered CcrM and chromosomal DNA, thus preventing DNA remethylation. The distinct control of available CcrM in progeny swarmer and stalked cells serves to protect the hemimethylated state of DNA during chromosome replication, enabling robustness of cell cycle progression.
Asunto(s)
Caulobacter/metabolismo , Ciclo Celular , Cromosomas Bacterianos/metabolismo , Metilación de ADN , Replicación del ADN , ADN Bacteriano/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caulobacter/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genéticaRESUMEN
We report the dynamic spatial organization of Caulobacter crescentus RNase E (RNA degradosome) and ribosomal protein L1 (ribosome) using 3D single-particle tracking and superresolution microscopy. RNase E formed clusters along the central axis of the cell, while weak clusters of ribosomal protein L1 were deployed throughout the cytoplasm. These results contrast with RNase E and ribosome distribution in Escherichia coli, where RNase E colocalizes with the cytoplasmic membrane and ribosomes accumulate in polar nucleoid-free zones. For both RNase E and ribosomes in Caulobacter, we observed a decrease in confinement and clustering upon transcription inhibition and subsequent depletion of nascent RNA, suggesting that RNA substrate availability for processing, degradation, and translation facilitates confinement and clustering. Importantly, RNase E cluster positions correlated with the subcellular location of chromosomal loci of two highly transcribed rRNA genes, suggesting that RNase E's function in rRNA processing occurs at the site of rRNA synthesis. Thus, components of the RNA degradosome and ribosome assembly are spatiotemporally organized in Caulobacter, with chromosomal readout serving as the template for this organization.
Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/enzimología , Endorribonucleasas/metabolismo , Proteínas Bacterianas/análisis , Caulobacter crescentus/metabolismo , Caulobacter crescentus/ultraestructura , Ciclo Celular , Polaridad Celular , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/ultraestructura , Endorribonucleasas/análisis , Regulación Bacteriana de la Expresión Génica , Proteínas Luminiscentes/análisis , Microscopía Fluorescente/métodos , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , ARN Bacteriano/biosíntesis , ARN Bacteriano/genética , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , Ribosomas/metabolismo , Imagen Individual de Molécula/métodos , Fracciones Subcelulares/enzimología , Moldes Genéticos , Transcripción GenéticaRESUMEN
Single-molecule super-resolution microscopy has developed from a specialized technique into one of the most versatile and powerful imaging methods of the nanoscale over the past two decades. In this perspective, we provide a brief overview of the historical development of the field, the fundamental concepts, the methodology required to obtain maximum quantitative information, and the current state of the art. Then, we will discuss emerging perspectives and areas where innovation and further improvement are needed. Despite the tremendous progress, the full potential of single-molecule super-resolution microscopy is yet to be realized, which will be enabled by the research ahead of us.
Asunto(s)
Imagen Individual de MoléculaRESUMEN
Nanoscale localization of point emitters is critical to several methods in optical fluorescence microscopy, including single-molecule super-resolution imaging and tracking. While the precision of the localization procedure has been the topic of extensive study, localization accuracy has been less emphasized, in part due to the challenge of producing an experimental sample containing unperturbed point emitters at known three-dimensional positions in a relevant geometry. We report a new experimental system which reproduces a widely-adopted geometry in high-numerical aperture localization microscopy, in which molecules are situated in an aqueous medium above a glass coverslip imaged with an oil-immersion objective. We demonstrate a calibration procedure that enables measurement of the depth-dependent point spread function (PSF) for open aperture imaging as well as imaging with engineered PSFs with index mismatch. We reveal the complicated, depth-varying behavior of the focal plane position in this system and discuss the axial localization biases incurred by common approximations of this behavior. We compare our results to theoretical calculations.