Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Vet Res ; 19(1): 250, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031127

RESUMEN

BACKGROUND: Helicobacter pylori is a worldwide pathogen that affects both animals and humans with a wide environmental distribution, causing serious health problems in humans. This research has timely addressed the topic of new sources of H. pylori infection, which is currently a global issue, especially in developing countries. For this purpose, 115 Tilapia fish, 50 freshwater samples, and 88 fish-handlers' stool samples were investigated for the presence of H. pylori in Qena Governorate, Egypt. The applied techniques were antigen screening tests, culturing, and molecular methods through ureC gene amplification, and 16 S rRNA characterization. RESULTS: Helicobacter pylori was detected in 7.83%, 14%, 4.35%, and 12% of the investigated fish and water samples by culture and PCR methods, respectively. Out of the total studied participants, 40 tested positive for H. pylori when screened by stool antigen test, of which 35 (39.77%), and 31 (35.23%) were confirmed by conventional and molecular techniques, respectively. The Fisher's exact test has shown a statistically significant correlation between H. pylori infection, sex, and age as risk factors, while the association was insignificant concerning the residence. Males contracted the infection at a higher rate than females (48.08% and 16.67%, respectively). Also, H. pylori infection rate was the highest among fish-handlers aged 36-45 years old (46.67%), followed by the 26-35 years old age group (39.53%). With regard to the residence, a higher occurrence rate was recorded in the rural (36.07%) than the urban population (33.33%). Helicobacter pylori isolates harbored the highest antimicrobial resistance against ampicillin (100%), metronidazole (95.24%), while the least antimicrobial resistance was recorded against levofloxacin (21.43%), and clarithromycin (26.20%). The phylogenetic analysis revealed a high degree of homology between the isolates selected from Tilapia fish, freshwater, and fish-handlers. CONCLUSIONS: Our data emphasized the role that fish and freshwater play in disseminating H. pylori infection as one of the diseases that has a significant public health issue.


Asunto(s)
Antiinfecciosos , Cíclidos , Infecciones por Helicobacter , Helicobacter pylori , Masculino , Femenino , Humanos , Animales , Helicobacter pylori/genética , Filogenia , Claritromicina , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/veterinaria , Metronidazol , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria , Farmacorresistencia Bacteriana
2.
Vet World ; 16(3): 571-579, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37041834

RESUMEN

Background and Aim: Fungi can play beneficial and detrimental roles in meat products; however, the diversity and significance of fungi in meat products are poorly understood. This study aimed to isolate and characterize fungal species from frozen beef samples collected from retail stores in the Qena Governorate, Egypt. Materials and Methods: A total of 70 frozen beef samples were collected from retail stores in Qena, Egypt. All samples were subjected to mycological examination. Fungal colonies were identified using conventional approaches, as well as the VITEK 2 system and DNA sequencing of the internal transcribed spacer region. Analyses of enzymatic activity, biofilm formation ability, and the antimicrobial resistance profiles of the isolated yeasts were also conducted. Results: Molds and yeasts were isolated from 40% and 60% of meat samples, respectively. Mold isolates were dominated by Aspergillus, Penicillium, and Cladosporium spp., whereas yeast isolates were identified as Candida albicans, Candida parapsilosis, Yarrowia lipolytica, Saccharomyces cerevisiae, and Rhodotorula mucilaginosa. Compared to other yeast species, the highest production of lipase and protease was observed in Candida species. The strongest ability to form biofilms was observed in Candida spp., followed by S. cerevisiae, Y. lipolytica, and R. mucilaginosa. The results of antimicrobial susceptibility testing revealed that all yeast isolates showed notable resistance to fluconazole and itraconazole. Conclusion: A significant correlation between antimicrobial resistance and biofilm formation was observed in several species. This study highlights the importance of the dangers of yeasts in food products and the extent of their impact on public health.

3.
Sci Rep ; 13(1): 15368, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717062

RESUMEN

Vibrio species can cause foodborne infections and lead to serious gastrointestinal illnesses. The purpose of this research was to detect the Vibrio cholerae and Vibrio parahaemolyticus in raw milk, dairy products, and water samples. Also, it investigated the virulence factors, antibiotic resistance and biofilm formation in isolated bacteria. Conventional and molecular approaches were used to identify the isolates in this study. Vibrio species were detected in 5% of the samples. Vibrio cholerae and Vibrio parahaemolyticus were isolated from 1.25 and 1.5%, respectively, of the total samples. Penicillin resistance was detected in all strains of Vibrio cholerae and Vibrio parahaemolyticus, with a MAR index ranging from 0.16 to 0.5. Four isolates were moderate biofilm producer and three of them were MDR. When Vibrio cholerae was screened for virulence genes, ctxAB, hlyA, and tcpA were found in 80, 60, and 80% of isolates, respectively. However, tdh + /trh + associated-virulence genes were found in 33.3% of Vibrio parahaemolyticus isolates.


Asunto(s)
Vibrio cholerae , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Biopelículas , Agregación Celular , Agua
4.
Vet World ; 16(8): 1636-1646, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37766716

RESUMEN

Background and Aim: Several strains of Aspergillus fumigatus produce mycotoxins that affect the health and productivity of dairy cattle, and their presence in dairy cattle feed is a serious concern. This study aimed to determine the densities of A. fumigatus and gliotoxin in commercial dairy feed. Materials and Methods: More than 60 dairy feed samples were examined for fungal contamination, specifically for A. fumigatus, using phenotypic approaches and DNA sequencing of the internal transcribed spacer (ITS) and ß-tubulin regions. Thin-layer chromatography and high-performance liquid chromatography (HPLC) were used to assess gliotoxin production in A. fumigatus. Real-time polymerase chain reaction (RT-PCR) was used to investigate the expression of gliZ, which was responsible for gliotoxin production. High-performance liquid chromatography was used to detect gliotoxin in feed samples. Results: Aspergillus was the most commonly identified genus (68.3%). Aspergillus fumigatus was isolated from 18.3% of dairy feed samples. Only four of the 11 A. fumigatus isolates yielded detectable gliotoxins by HPLC. In total, 7/11 (43.7%) feed samples tested had gliotoxin contamination above the threshold known to induce immunosuppressive and apoptotic effects in vitro. The HPLC-based classification of isolates as high, moderate, or non-producers of gliotoxin was confirmed by RT-PCR, and the evaluation of gliZ expression levels corroborated this classification. Conclusion: The identification of A. fumigatus from animal feed greatly depended on ITS and ß-tubulin sequencing. Significant concentrations of gliotoxin were found in dairy cattle feed, and its presence may affect dairy cow productivity and health. Furthermore, workers face contamination risks when handling and storing animal feed.

5.
Biology (Basel) ; 11(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36552354

RESUMEN

Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen associated with nosocomial infections. In this study, 100 raw milk samples were collected from Qena, Egypt, and subjected to conventional and molecular assays to determine the presence of A. baumannii and investigate their antimicrobial resistance and biofilm formation. Our findings revealed that, among the 100 samples, Acinetobacter spp. were found in 13 samples based on CHROM agar results. We further characterized them using rpoB and 16S-23SrRNA sequencing and gyrB multiplex PCR analysis and confirmed that 9 out of the 13 Acinetobacter spp. isolates were A. baumannii and 4 were other species. The A. baumannii isolates were resistant to ß-lactam drugs, including cefotaxime (44%), ampicillin-sulbactam and levofloxacin (33.3% for each), imipenem, meropenem and aztreonam (22.2% for each). We observed different antimicrobial resistance patterns, with a multi-antibiotic resistant (MAR) index ranging from 0.2 to 0.3. According to the PCR results, blaOXA-51 and blaOXA-23 genes were amplified in 100% and 55.5% of the A. baumannii isolates, respectively, while the blaOXA-58 gene was not amplified. Furthermore, the metallo-ß-lactamases (MBL) genes blaIMP and blaNDM were found in 11.1% and 22.2% of isolates, respectively, while blaVIM was not amplified. Additionally, eight A. baumannii isolates (88.8%) produced black-colored colonies on Congo red agar, demonstrating their biofilm production capacity. These results showed that, besides other foodborne pathogens, raw milk should also be examined for A. baumannii, which could be a public health concern.

6.
Microorganisms ; 10(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36296251

RESUMEN

Bacteria of the genus Pseudomonas are pathogens in both humans and animals. The most prevalent nosocomial pathogen is P. aeruginosa, particularly strains with elevated antibiotic resistance. In this study, a total of eighteen previously identified Pseudomonas species strains, were isolated from chicken. These strains were screened for biofilm formation and antibiotic resistance. In addition, we evaluated clove oil's effectiveness against Pseudomonas isolates as an antibiofilm agent. The results showed that Pseudomonas species isolates were resistant to most antibiotics tested, particularly those from the ß-lactamase family. A significant correlation (p < 0.05) between the development of multidrug-resistant isolates and biofilms is too informal. After amplifying the AmpC-plasmid-mediated genes (blaCMY, blaMIR, DHA, and FOX) and biofilm-related genes (psld, rhlA, and pelA) in most of our isolates, PCR confirmed this relationship. Clove oil has a potent antibiofilm effect against Pseudomonas isolates, and may provide a treatment for bacteria that form biofilms and are resistant to antimicrobials.

7.
Vet World ; 14(9): 2410-2418, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34840461

RESUMEN

BACKGROUND AND AIM: Raw milk is considered an essential source of nutrition during all stages of human life because it offers a valuable supply of protein and minerals. Importantly, milk is considered a good media for the growth and contamination of many pathogenic bacteria, especially food-borne pathogens such as Escherichia coli. Thus, the objective of this study was to characterize E. coli and detect its virulence factors and antibiotic resistance from raw milk samples. MATERIALS AND METHODS: Raw milk samples (n=100) were collected from different localities in Qena, Egypt, and investigated for the presence of E. coli using different biochemical tests, IMViC tests, serotyping to detect somatic antigen type, and molecularly by polymerase chain reaction (PCR) tests. The presence of different virulence and antimicrobial genes (hly, eae, stx1, stx2, blaTEM, tetA(A), and tetB genes) in E. coli isolates was evaluated using PCR. RESULTS: The results demonstrated that 10 out of 100 milk samples were contaminated with E. coli. Depending on serology, the isolates were classified as O114 (one isolate), O27 (two isolates), O111 (one isolate), O125 (two isolates), and untypeable (five isolates) E. coli. The sequencing of partially amplified 16S rRNA of the untypeable isolates resulted in one isolate, which was initially misidentified as untypeable E. coli but later proved as Enterobacter hormaechei. Moreover, antibacterial susceptibility analysis revealed that nearly all isolates were resistant to more than 3 families of antibiotics, particularly to b-lactams, clindamycin, and rifampin. PCR results demonstrated that all E. coli isolates showed an accurate amplicon for the blaTEM and tetA(A) genes, four isolates harbored eae gene, other four harbored tetB gene, and only one isolate exhibited a positive stx2 gene. CONCLUSION: Our study explored vital methods for identifying E. coli as a harmful pathogen of raw milk using 16S rRNA sequencing, phylogenetic analysis, and detection of virulence factors and antibiotic-resistant genes.

8.
PLoS One ; 16(11): e0259584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780540

RESUMEN

This study is designed to discuss the antimicrobial resistance, virulence determinants and biofilm formation capacity of Enterococcus spp. isolated from milk of sheep and goat with subclinical mastitis in Qena, Egypt. The obtained isolates were identified by the VITEK2 system and 16S rDNA sequencing as E. faecalis, E. faecium, E. casseliflavus and E. hirae. Overall, E. faecalis and E. faecium were the dominant species recovered from mastitic milk samples. The antimicrobial susceptibility test evidenced multidrug resistance of the isolates against the following antimicrobials: oxacillin (89.2.%), followed by vancomycin (75.7%) and linezolid (70.3%). Also, most of these isolates (73%) could form biofilms. For example, 18.9% of Enterococcus strains formed strong biofilm, whereas 32.4% of isolates formed moderate biofilm and 21.6% of isolates formed weak biofilm. The most prevalent resistance genes found in our isolates were blaZ (54%), vanA (40%), ermB (51.4%), tetM (13.5%) and optrA (10.8%). Moreover, asa1 (37.8%), cylA (42.3%), gelE (78.4%), esp (32.4%), EF3314(48.6%) and ace (75.5%) were the most common virulence genes. A significant correlation was found between biofilm formation, multidrug resistance and virulence genes of the isolates. This study highlights several aspects of virulence and harmfulness of Enterococcus strains isolated from subclinical mastitic milk, which necessitates continuous inspection and monitoring of dairy animals.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Enterococcus/efectos de los fármacos , Enterococcus/genética , Mastitis/microbiología , Animales , Farmacorresistencia Bacteriana , Femenino , Cabras , Leche/microbiología , Ovinos , Virulencia/genética
9.
Environ Sci Pollut Res Int ; 28(34): 46999-47023, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34272669

RESUMEN

In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.


Asunto(s)
Antígenos Virales , Virosis , Animales , Bovinos , Calostro , Femenino , Humanos , Embarazo , Virosis/veterinaria
10.
EXCLI J ; 16: 1308-1318, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29333132

RESUMEN

Contamination of fish by fungi and their mycotoxins poses major health concerns to human and animals. Therefore, our study was aimed to investigate Aspergillus flavus (A. flavus) infections and the levels of aflatoxins in Nile tilapia, Oreochromis niloticus (O. niloticus), and fish feed. Samples from O. niloticus and fish feed (n=25 for each) were randomly collected from private fish farms at Qena province, Egypt, during the winter season. Different Aspergillus spp. were detected in 60 % and 64 % of O. niloticus and fish feed, respectively. HPLC-based analysis revealed aflatoxin-producing activity in 75 % and 83 % of A. flavus isolates from fish and fish feed, respectively. While 96 % of O. niloticus muscles and fish feed samples were contaminated with aflatoxins, the detected levels were below the permissible limits, i.e. 20 µg/kg. Moreover, experimental infection with toxicogenic A. flavus isolates was conducted to evaluate their pathogenicity in O. niloticus. Expectedly, experimental infections of O. niloticus with A. flavus were associated with several clinical symptoms reported in naturally infected fish, e.g. yellow coloration with skin ulceration, hemorrhagic ulcerative patches on gills and skin, corneal opacity, fin rot and abdominal distention. Furthermore, aflatoxicogenic A. flavus isolates from fish were sensitive to herbal clove oil. Even though the measured levels of aflatoxin were below permissible limits, effort should be placed on further reduction of exposure to genotoxic and carcinogenic mycotoxins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA