Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nanotechnology ; 35(24)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38484390

RESUMEN

Nanostructured metal oxide semiconductors have emerged as promising nanoscale photocatalysts due to their excellent photosensitivity, chemical stability, non-toxicity, and biocompatibility. Enhancing the photocatalytic activity of metal oxide is critical in improving their efficiency in radical ion production upon optical exposure for various applications. Therefore, this review paper provides an in-depth analysis of the photocatalytic activity of nanostructured metal oxides, including the photocatalytic mechanism, factors affecting the photocatalytic efficiency, and approaches taken to boost the photocatalytic performance through structure or material modifications. This paper also highlights an overview of the recent applications and discusses the recent advancement of ZnO-based nanocomposite as a promising photocatalytic material for environmental remediation, energy conversion, and biomedical applications.

2.
Electrophoresis ; 44(5-6): 573-620, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36604943

RESUMEN

Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.


Asunto(s)
Electroforesis , Electroforesis/métodos , Conductividad Eléctrica , Separación Celular , Predicción
3.
Phys Chem Chem Phys ; 25(20): 14206-14218, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37165672

RESUMEN

Non-magnetic dopants and p-type materials are attractive choices to explore the mechanism and origin of room-temperature defect-based ferromagnetism in metal oxide-based DMSs. In this study, we performed comprehensive transport, magnetic, structural, optical, and compositional as well as DFT studies of pristine, Li-doped, and Bi-Li codoped vertically aligned ZnO NW films to explore the mechanism and origin of ferromagnetism. We used a simple solution process to synthesize a wurtzite structure and vertically aligned ZnO NWs on a Si substrate. The doping, high crystallinity, and vertical alignment along the 002 planes were evidenced through HRTEM, FESEM, and XRD measurements. The XPS analysis confirmed the +1 and +3 states of Li and Bi, respectively. Moreover, Raman analysis also depicted the characteristic peaks of ZnO NWs at 98.31 cm-1 and 437.71 cm-1. The PL studies of doped NWs showed a typical NBE peak of ZnO at ∼395 nm along with a sub-gap defect-related broad peak at ∼504 nm indicating the presence of defects due to doping. The pure ZnO NW samples showed negligible saturation magnetization (Ms) at room temperature while the saturation magnetization was observed to increase with Li-doping and reduced with Bi-Li codoping. According to the Hall studies the pure ZnO NW film showed n-type conductivity, while all doped and codoped samples showed p-type conductivity. The hole concentration was observed to increase with Li-doping and decrease with Bi-Li codoping showing similar behavior to that of the Ms value, thereby suggesting a direct correlation between Ms and carrier concentration. The I-V properties showed a similar trend to that of carrier concentration and Ms. Our DFT studies showed that magnetization increased by Li doping and reduced by Li-Bi codoping in defective ZnO crystals by replacing Zn with Li and Bi atoms at the Zn site. Overall, our studies highlight the immense potential of hole-mediated Bi-Li codoped ZnO NW devices which are expected to play a pivotal role in developing spintronic devices.

4.
Electrophoresis ; 43(4): 609-620, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34859896

RESUMEN

This article describes a dielectrophoresis (DEP)-based simulation and experimental study of human epidermal keratinocyte (HEK) cells for wounded skin cell migration toward rapid epithelialization. MyDEP is a standalone software designed specifically to study dielectric particles and cell response to an alternating current (AC) electric field. This method demonstrated that negative dielectrophoresis (NDEP ) occurs in HEK cells at a wide frequency range in highly conductive medium. The finite element method was used to characterize particle trajectory based on DEP and drag force. The performance of the system was assessed using HEK cells in a highly conductive EpiLife suspending medium. The DEP experiment was performed by applying sinusoidal wave AC potential at the peak-to-peak voltage of 10 V in a tapered aluminum microelectrode array from 100 kHz to 1 MHz. We experimentally observed the occurrence of NDEP, which attracted HEK cells toward the local electric field minima in the region of interest. The DIPP-MotionV software was used to track cell migration in the prerecorded video via an automatic marker and estimate the average speed and acceleration of the cells. The results showed that HEK cell migration was accomplished approximately at 6.43 µm/s at 100 kHz with 10 V, and FDEP caused the cells to migrate and align at the target position, which resulted in faster wound closures because of the application of an electric field frequency to HEK cells in random locations.


Asunto(s)
Queratinocitos , Repitelización , Movimiento Celular , Electroforesis/métodos , Humanos , Microelectrodos
5.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365910

RESUMEN

A thin film of single-walled carbon nanotube (SWCNT) network field-effect transistor (FET) was fabricated by a simple, fast, and reliable deposition method for electronic applications. This study aims to develop a method for fabricating a thin film of random SWCNTs to be used as a transducer to detect human serum albumin (HSA) in biosensor applications. The random SWCNT network was deposited using the airbrush technique. The morphology of the CNT network was examined by utilising atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), while electrical characteristics were analysed using three-terminal IV measurements. The thin film (SWCNT network) was applied as a transducer to detect human serum albumin (HSA) based on its covalent interaction with antibodies. HSA plays a significant part in the physiological functions of the human body. The surface alteration of the SWCNTs was verified using Fourier transform infrared (FTIR) spectroscopy. Electrical current-voltage measurements validated the surface binding and HSA detection. The biosensor linearly recorded a 0.47 fg/mL limit of detection (LOD) and a high sensitivity of 3.44 µA (g/mL)-1 between 1 fg/mL and 10 pg/mL. This device can also be used to identify a genuine HSA despite interference from other biomolecules (i.e., bovine serum albumin (BSA)), thus demonstrating the random SWCNT-FET immunosensor ability to quantify HSA in a complex biological environment.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Humanos , Técnicas Biosensibles/métodos , Nanotubos de Carbono/química , Albúmina Sérica Humana , Inmunoensayo , Límite de Detección
6.
Electrophoresis ; 42(20): 2033-2059, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34346062

RESUMEN

Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in nonuniform electric fields by utilizing unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to DEP application in biomedical field reported between 2016 and 2020. First, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Second, the biomedical uses of DEP in liquid biopsies, stem cell-based therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned.


Asunto(s)
Tecnología Biomédica , Electroforesis , Electrodos , Predicción
7.
Sensors (Basel) ; 21(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922993

RESUMEN

Diabetes patients are at risk of having chronic wounds, which would take months to years to resolve naturally. Chronic wounds can be countered using the electrical stimulation technique (EST) by dielectrophoresis (DEP), which is label-free, highly sensitive, and selective for particle trajectory. In this study, we focus on the validation of polystyrene particles of 3.2 and 4.8 µm to predict the behavior of keratinocytes to estimate their crossover frequency (fXO) using the DEP force (FDEP) for particle manipulation. MyDEP is a piece of java-based stand-alone software used to consider the dielectric particle response to AC electric fields and analyzes the electrical properties of biological cells. The prototypic 3.2 and 4.8 µm polystyrene particles have fXO values from MyDEP of 425.02 and 275.37 kHz, respectively. Fibroblast cells were also subjected to numerical analysis because the interaction of keratinocytes and fibroblast cells is essential for wound healing. Consequently, the predicted fXO from the MyDEP plot for keratinocyte and fibroblast cells are 510.53 and 28.10 MHz, respectively. The finite element method (FEM) is utilized to compute the electric field intensity and particle trajectory based on DEP and drag forces. Moreover, the particle trajectories are quantified in a high and low conductive medium. To justify the simulation, further DEP experiments are carried out by applying a non-uniform electric field to a mixture of different sizes of polystyrene particles and keratinocyte cells, and these results are well agreed. The alive keratinocyte cells exhibit NDEP force in a highly conductive medium from 100 kHz to 25 MHz. 2D/3D motion analysis software (DIPP-MotionV) can also perform image analysis of keratinocyte cells and evaluate the average speed, acceleration, and trajectory position. The resultant NDEP force can align the keratinocyte cells in the wound site upon suitable applied frequency. Thus, MyDEP estimates the Clausius-Mossotti factors (CMF), FEM computes the cell trajectory, and the experimental results of prototypic polystyrene particles are well correlated and provide an optimistic response towards keratinocyte cells for rapid wound healing applications.


Asunto(s)
Queratinocitos , Poliestirenos , Simulación por Computador , Electroforesis , Humanos , Cicatrización de Heridas
8.
Nanotechnology ; 31(30): 305710, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32244229

RESUMEN

Vertically standing MoS2 nanoflakes are favourable in applications such as energy storage devices, hydrogen evolution reactions, and gas sensors due to their large surface area and high density of exposed edges. In this work, we report the effect of Mo vapor concentration on the morphology of vertical MoS2 nanoflakes prepared by chemical vapor deposition at atmospheric pressure. A series of MoS2 samples were grown under different Mo vapor concentrations by varying the separation distance (x) between the MoO3 source and the substrate. Field emission scanning electron microscopy showed the sample grown at x = 1 cm had a high density of vertical flakes (7 vertical flakes µm-2) with an average flake length of ~770 nm and thickness of ~10 nm. As x increased to 4 cm, the average flake length was reduced to ~150 nm while the flake orientation changed from vertical to lateral. That is, high Mo vapor concentration favours the formation of large and vertical MoS2 nanoflakes. However, oversupply of Mo vapor results in significantly thicker flakes. Raman spectra of all samples showed two main peaks at 380 and 407 cm-1 that correspond to the E1 2 g and A1 g vibrational peaks of MoS2. As x decreased from 4 to 1, the peak intensity ratio (E1 2g/A1 g) reduced from 0.58 to 0.42, suggesting greater dominance of vertical flakes at low x. X-ray diffraction data showed a prominent peak at 14.4°, which corresponded to the (002) diffraction peak of 2H MoS2. Transmission electron microscopy verified the flakes consist of eight layers with an interlayer spacing of 0.62 nm. Based on hydrogen evolution reaction measurements, samples with thin flakes have high catalytic activity. This work highlights the importance of optimizing Mo vapor concentration to obtain a high density of thin, large, and vertically standing MoS2 nanoflakes.

9.
Nanotechnology ; 32(3): 035705, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33089828

RESUMEN

Two-dimensional materials have attracted intensive attention recently due to their unique optical and electronic properties and their promising applications in water splitting and solar cells. As a representative layer-structured of transition metal dichalcogenides, MoS2 has attracted considerable devotion owing to its exceptional photo and electro properties. Here, we show that the chemical vapour deposition (CVD) growth of MoS2 on Si photocathode and graphene/Si photocathode can be used to prepare photoelectrocatalysts for water splitting. We explore a bottom-up method to grow vertical heterostructures of MoS2 and graphene by using the two-step CVD. Graphene is first grown through ambient-pressure CVD on a Cu substrate and then transferred onto SiO2/Si substrate by using the chemical wet transfer followed by the second CVD method to grow MoS2 over the graphene/SiO2/Si. The effect of the growth temperatures of MoS2 is studied, and the optimum temperature is 800 °C. The MoS2 produced at 800 °C has the highest photocurrent density at -0.23 mA cm-2 in 0.5 M Na2SO4 and -0.51 mA cm-2 in 0.5 M H2SO4 at -0.8 V versus Ag/AgCl. The linear sweep voltammetry shows that MoS2 in 0.5 M H2SO4 has about 55% higher photocurrent density than MoS2 in Na2SO4 due to the higher concentration of protons (H+) in the H2SO4 electrolyte solution. Protons are reduced to H2 at lower overvoltage and hydrogen generation is thus enhanced at higher photocurrent density. MoS2/graphene/SiO2/Si (MGS) has -0.07 mA cm-2 at -0.8 V versus Ag/AgCl of photocurrent density, which is 70% lower than that of bare MoS2 because MGS is thicker compared with MoS2. Thus, MoS2 has potential as a photocatalyst in photoelectrochemical water splitting. The structure and the morphology of MoS2 play an important role in determining the photocurrent performance.

10.
Nanotechnology ; 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33022666

RESUMEN

Two-dimensional materials have attracted intensive attention recently due to their unique optical and electronic properties and their promising applications in water splitting and solar cells. As a representative layer-structured of transition metal dichalcogenides, MoS2has attracted considerable devotion owing to its exceptional photo and electro properties. Here, we show that the chemical vapour deposition (CVD) growth of MoS2on Si photocathode and graphene/Si photocathode can be used to prepare photoelectrocatalysts for water splitting. We explore a bottom-up method to grow vertical heterostructures of MoS2and graphene by using the two-step CVD. Graphene is first grown through ambient-pressure CVD on a Cu substrate and then transferred onto SiO2/Si substrate by using the chemical wet transfer followed by the second CVD method to grow MoS2over the graphene/SiO2/Si. The effect of the growth temperatures of MoS2is studied, and the optimum temperature is 800 °C. The MoS2produced at 800 °C has the highest photocurrent density at -0.23 mA cm-2in 0.5 M Na2SO4and -0.51 mA cm-2in 0.5 M H2SO4at -0.8 V vs. Ag/AgCl. The linear sweep voltammetry shows that MoS2in 0.5 M H2SO4has about 55% higher photocurrent density than MoS2in Na2SO4due to the higher protons (H+) in the H2SO4electrolyte solution, which are sufficiently charged to reduce to H2and, therefore hydrogen evolves more rapidly where the photocurrent density and hydrogen generation can be enhanced. MoS2/graphene/SiO2/Si (MGS) has -0.07 mA cm-2at -0.8 V vs. Ag/AgCl of photocurrent density, which is 70% lower than that of bare MoS2because MGS is thicker compared with MoS2. Thus, MoS2has potential as a photocatalyst in photoelectrochemical water splitting. The structure and the morphology of MoS2play an important role in determining the photocurrent performance.

11.
Phys Chem Chem Phys ; 22(6): 3481-3489, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31989130

RESUMEN

The complicated chemical vapour deposition (CVD) is currently the most viable method of producing graphene. Most studies have extensively focused on chemical aspects either through experiments or computational studies. However, gas-phase dynamics in CVD reportedly plays an important role in improving graphene quality. Given that mass transport is the rate-limiting step for graphene deposition in atmospheric-pressure CVD (APCVD), the interfacial phenomena at the gas-solid interface (i.e., the boundary layer) are a crucial controlling factor. Accordingly, only by understanding and controlling the boundary-layer thickness can uniform full-coverage graphene deposition be achieved. In this study, a simplified computational fluid dynamics analysis of APCVD was performed to investigate gas-phase dynamics during deposition. Boundary-layer thickness was also estimated through the development of a customised homogeneous gas model. Interfacial phenomena, particularly the boundary layer and mass transport within it, were studied. The effects of Reynolds number on these factors were explored and compared with experimentally obtained results of the characterised graphene deposit. We then discussed and elucidated the important relation of fluid dynamics to graphene growth through APCVD.

12.
Polymers (Basel) ; 16(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39204471

RESUMEN

The wound healing mechanism is dynamic and well-orchestrated; yet, it is a complicated process. The hallmark of wound healing is to promote wound regeneration in less time without invading skin pathogens at the injury site. This study developed a sodium-carboxymethylcellulose (Na-CMC) bilayer scaffold that was later integrated with silver nanoparticles/graphene quantum dot nanoparticles (AgNPs/GQDs) as an acellular skin substitute for future use in diabetic wounds. The bilayer scaffold was prepared by layering the Na-CMC gauze onto the ovine tendon collagen type 1 (OTC-1). The bilayer scaffold was post-crosslinked with 0.1% (w/v) genipin (GNP) as a natural crosslinking agent. The physical and chemical characteristics of the bilayer scaffold were evaluated. The results demonstrate that crosslinked (CL) groups exhibited a high-water absorption capacity (>1000%) and an ideal water vapour evaporation rate (2000 g/m2 h) with a lower biodegradation rate and good hydrophilicity, compression, resilience, and porosity than the non-crosslinked (NC) groups. The minimum inhibitory concentration (MIC) of AgNPs/GQDs presented some bactericidal effects against Gram-positive and Gram-negative bacteria. The cytotoxicity tests on bilayer scaffolds demonstrated good cell viability for human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Therefore, the Na-CMC bilayer scaffold could be a potential candidate for future diabetic wound care.

13.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050362

RESUMEN

This paper reports the development of ZnO NRs/rGO-based photocatalysts integrated into a tree-branched polymer-based microfluidic reactor for efficient photodegradation of water contaminants. The reactor system includes a photocatalytic reactor, tree-branched microfluidic channels, and ZnO nanorods (NRs) coated with reduced graphene oxide (rGO) on a glass substrate within an area of 0.6 × 0.6 cm2. The ZnO NRs/rGO acts as a photocatalyst layer grown hydrothermally and then spray-coated with rGO. The microfluidic system is made of PDMS and fabricated using soft lithography (micro molding using SU-8 master mold patterned on a silicon wafer). The device geometry is designed using AutoCAD software and the flow properties of the microfluidics are simulated using COMSOL Multiphysics. The microfluidic platform's photocatalytic process aims to bring the nanostructured photocatalyst into very close proximity to the water flow channel, reducing the interaction time and providing effective purification performance. Our functionality test showed that a degradation efficiency of 23.12 %, within the effective residence time of less than 3 s was obtained.

14.
Crit Rev Anal Chem ; 52(3): 637-648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32997522

RESUMEN

Biosensors operating based on electrical methods are being accelerated toward rapid and efficient detection that improve the performance of the device. Continuous study in nano- and material-sciences has led to the inflection with properties of nanomaterials that fit the trend parallel to the biosensor evolution. Advancements in technology that focuses on nano-hybrid are being used to develop biosensors with better detection strategies. In this sense, titanium dioxide (TiO2) nanomaterials have attracted extensive interest in the construction of electrical biosensors. The formation of TiO2 nano-hybrid as an electrical transducing material has revealed good results with high performance. The modification of the sensing portion with a combination (nano-hybrid form) of nanomaterials has produced excellent sensors in terms of stability, reproducibility, and enhanced sensitivity. This review highlights recent research advancements with functional TiO2 nano-hybrid materials, and their victorious story in the construction of electrical biosensors are discussed. Future research directions with commercialization of these devices and their extensive utilizations are also discussed.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Reproducibilidad de los Resultados , Titanio
15.
ACS Omega ; 7(2): 2252-2259, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35071914

RESUMEN

Alpha (α)- and beta (ß)-phase gallium oxide (Ga2O3), emerging as ultrawide-band gap semiconductors, have been paid a great deal of attention in optoelectronics and high-performance power semiconductor devices owing to their ultrawide band gap ranging from 4.4 to 5.3 eV. The hot-wall mist chemical vapor deposition (mist-CVD) method has been shown to be effective for the growth of pure α- and ß-phase Ga2O3 thin films on the α-Al2O3 substrate. However, challenges to preserve their intrinsic properties at a critical growth temperature for robust applications still remain a concern. Here, we report a convenient route to grow a mixed α- and ß-phase Ga2O3 ultrathin film on the α-Al2O3 substrate via mist-CVD using a mixture of the gallium precursor and oxygen gas at growth temperatures, ranging from 470 to 700 °C. The influence of growth temperature on the film characteristics was systematically investigated. The results revealed that the as-grown Ga2O3 film possesses a mixed α- and ß-phase with an average value of dislocation density of 1010 cm-2 for all growth temperatures, indicating a high lattice mismatch between the film and the substrate. At 600 °C, the ultrathin and smooth Ga2O3 film exhibited a good surface roughness of 1.84 nm and an excellent optical band gap of 5.2 eV. The results here suggest that the mixed α- and ß-phase Ga2O3 ultrathin film can have great potential in developing future high-power electronic devices.

16.
ACS Omega ; 7(45): 41236-41245, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406506

RESUMEN

ß-Gallium oxide (Ga2O3) has received intensive attention in the scientific community as a significant high-power switching semiconductor material because of its remarkable intrinsic physical characteristics and growth stability. This work reports the heteroepitaxial growth of the ß-Ga2O3 ultrathin film on a sapphire substrate via mist chemical vapor deposition (CVD). This study used a simple solution-processed and nonvacuum mist CVD method to grow a heteroepitaxial ß-Ga2O3 thin film at 700 °C using a Ga precursor and carrier gases such as argon and oxygen. Various characterization techniques were used to determine the properties of the thin film. Additionally, a computational study was performed to study the temperature distribution and different mist velocity profiles of the finite element mist CVD model. This simulation study is essential for investigating low to high mist velocities over the substrate and applying low velocity to carry out experimental work. XRD and AFM results show that the ß-Ga2O3 thin film is grown on a sapphire substrate of polycrystalline nature with a smooth surface. HR-TEM measurement and UV-visible transmission spectrometry demonstrated heteroepitaxial ß-Ga2O3 in an ultrathin film with a band gap of 4.8 eV.

17.
Sci Rep ; 11(1): 3603, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574491

RESUMEN

Investigation was made of the optical response of metal-dielectric stacks-based cavity structures embedded with graphene microheaters for the purpose of perfect absorption. The absorber configuration exploits the Ge2Sb2Te5 (GST) phase changing medium, and the effects of different parametric and operational conditions on the absorption spectra were explored. The refractive indices of GST layers can be manipulated by the external electrical pulses applied to microheaters. The amplitude and duration of electrical pulses define the crystallinity ratio of the used GST mediums. The results revealed achieving perfect absorption (> 99%) in the visible and infrared (IR) regimes of the electromagnetic spectrum upon incorporating two thin GST layers of different thicknesses (in the stack) in the amorphous state. The proposed configuration showed the capability of introducing independent transition state (amorphous and/or crystalline) for each GST layer-the visible regime could be extended to the IR regime, and the perfect absorption peak in the IR regime could be broadened and red-shifted. It is expected that the structure would find potential applications in active photonic devices, infrared imaging, detectors and tunable absorbers.

18.
Micromachines (Basel) ; 12(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206662

RESUMEN

Thermoelectric generators (TEGs) are a form of energy harvester and eco-friendly power generation system that directly transform thermal energy into electrical energy. The thermoelectric (TE) method of energy harvesting takes advantage of the Seebeck effect, which offers a simple solution for fulfilling the power-supply demand in almost every electronics system. A high-temperature condition is commonly essential in the working mechanism of the TE device, which unfortunately limits the potential implementation of the device. This paper presents an in-depth analysis of TEGs at low operating temperature. The review starts with an extensive description of their fundamental working principles, structure, physical properties, and the figure of merit (ZT). An overview of the associated key challenges in optimising ZT value according to the physical properties is discussed, including the state of the art of the advanced approaches in ZT optimisation. Finally, this manuscript summarises the research status of Bi2Te3-based semiconductors and other compound materials as potential materials for TE generators working at low operating temperatures. The improved TE materials suggest that TE power-generation technology is essential for sustainable power generation at near-room temperature to satisfy the requirement for reliable energy supplies in low-power electrical/electronics systems.

19.
Materials (Basel) ; 14(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525586

RESUMEN

Gallium oxide (Ga2O3) is a promising wide-band-gap semiconductor material for UV optical detectors and high-power transistor applications. The fabrication of p-type Ga2O3 is a key problem that hinders its potential for realistic power applications. In this paper, pure α-Ga2O3 and Ca-doped α-Ga2O3 band structure, the density of states, charge density distribution, and optical properties were determined by a first-principles generalized gradient approximation plane-wave pseudopotential method based on density functional theory. It was found that calcium (Ca) doping decreases the bandgap by introducing deep acceptor energy levels as the intermediate band above the valence band maximum. This intermediate valence band mainly consists of Ca 3p and O 2p orbitals and is adequately high in energy to provide an opportunity for p-type conductivity. Moreover, Ca doping enhances the absorptivity and reflectivity become low in the visible region. Aside, transparency decreases compared to the pure material. The optical properties were studied and clarified by electrons-photons interband transitions along with the complex dielectric function's imaginary function.

20.
ACS Omega ; 6(18): 12143-12154, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056368

RESUMEN

We report a practical chemical vapor deposition (CVD) route to produce bilayer graphene on a polycrystalline Ni film from liquid benzene (C6H6) source at a temperature as low as 400 °C in a vertical cold-wall reaction chamber. The low activation energy of C6H6 and the low solubility of carbon in Ni at such a low temperature play a key role in enabling the growth of large-area bilayer graphene in a controlled manner by a Ni surface-mediated reaction. All experiments performed using this method are reproducible with growth capabilities up to an 8 in. wafer-scale substrate. Raman spectra analysis, high-resolution transmission electron microscopy, and selective area electron diffraction studies confirm the growth of Bernal-stacked bilayer graphene with good uniformity over large areas. Electrical characterization studies indicate that the bilayer graphene behaves much like a semiconductor with predominant p-type doping. These findings provide important insights into the wafer-scale fabrication of low-temperature CVD bilayer graphene for next-generation nanoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA