Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Vet Dermatol ; 34(2): 107-114, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36482868

RESUMEN

BACKGROUND: Atopic dogs often are managed with allergen-specific immunotherapy (AIT) and concurrent dosages of ciclosporin (CSA) or oclacitinib to alleviate their clinical signs. Both drugs might affect proper tolerance induction by inhibiting regulatory T-cell (Treg) induction. HYPOTHESIS/OBJECTIVES: We evaluated Treg cell numbers and serum interleukin (IL)-10 and transforming growth factor-beta (TGF-ß)1 levels in dogs diagnosed with atopic dermatitis (AD) and successfully treated with either CSA or oclacitinib for nine or more months. ANIMALS: We included 15 dogs receiving oclacitinib, 14 dogs treated with CSA, 15 healthy dogs, 13 dogs with untreated moderate-to-severe AD and 15 atopic dogs controlled with AIT. MATERIALS AND METHODS: Peripheral blood CD4+CD25+FOXP3+ T-cell percentages were determined using flow cytometry. Serum concentrations of IL-10 and TGF-ß1 were measured by enzyme-linked immunosorbent assay. RESULTS: The percentage of Treg cells in the CSA group was significantly lower in comparison with the healthy group (p = 0.0003), the nontreated AD group (p = 0.0056) or the AIT group (p = 0.0186). There was no significant difference in Treg cell percentages between the CSA and oclacitinib groups, nor between the oclacitinib and the healthy, nontreated AD or AIT-treated dogs. No significant differences were detected in IL-10 and TGF-ß1 serum concentrations between the five groups. CONCLUSIONS AND CLINICAL RELEVANCE: Lower Treg cell percentages in the CSA-treated dogs suggest an impact of this drug on this cell population; however, it does not necessarily mean that it diminishes tolerance. Functionality and cytokine production may be more important than the number of Treg cells. Further studies evaluating the treatment outcome of dogs receiving AIT and concurrent drugs are needed to show clinical relevance.


Asunto(s)
Dermatitis Atópica , Enfermedades de los Perros , Perros , Animales , Ciclosporina/uso terapéutico , Linfocitos T Reguladores , Interleucina-10 , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/veterinaria , Factor de Crecimiento Transformador beta1/uso terapéutico , Factor de Crecimiento Transformador beta/uso terapéutico , Tolerancia Inmunológica , Enfermedades de los Perros/tratamiento farmacológico
2.
PLoS Genet ; 15(6): e1008178, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199784

RESUMEN

Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-ß mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.


Asunto(s)
Antígenos CD/genética , Antígenos Ly/genética , Diabetes Mellitus Tipo 1/genética , Páncreas/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diabetes Mellitus Tipo 1/patología , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Haplotipos/genética , Humanos , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , Páncreas/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
3.
J Immunol ; 187(11): 5805-12, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22058413

RESUMEN

Complement, NKT, and NK cells play critical roles in the first line defense against pathogens. Functional roles for both C5a receptors, that is, complement receptor C5a (C5aR) and C5a receptor-like 2 (C5L2), in sepsis have been demonstrated. However, the role of C5a in innate lymphocyte activation during sepsis remains elusive. In this article, we show that naive NKT and NK cells already express high levels of C5aR and minor levels of C5L2 mRNA, but no protein. Upon Escherichia coli-induced sepsis, we found C5aR surface expression on subpopulations of NKT and NK cells, suggesting rapid translation into C5aR protein on bacterial encounter. Importantly, significantly increased survival in the absence of C5aR, NKT, and NK cells, but not of C5L2, was associated with reduced IFN-γ and TNF-α serum levels. Sepsis induction in C5aR(+)/C5aR(-) mixed bone marrow chimeras identified cognate engagement of C5aR on NKT cells as an important factor for the recruitment of NKT cells. Furthermore, we found synergistic interaction between C5aR and TLRs enhancing the production of TNF-α and IFN-γ from NKT and NK cells in cocultures with dendritic cells. Our results identify C5aR activation as a novel pathway driving detrimental effects of NKT and NK cells during early experimental sepsis.


Asunto(s)
Complemento C5a/inmunología , Células Asesinas Naturales/inmunología , Células T Asesinas Naturales/inmunología , Sepsis/inmunología , Animales , Separación Celular , Complemento C5a/metabolismo , Citometría de Flujo , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Células T Asesinas Naturales/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Anafilatoxina C5a/inmunología , Receptor de Anafilatoxina C5a/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sepsis/metabolismo
4.
J Immunol ; 187(1): 337-49, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21613619

RESUMEN

Environmental and genetic factors define the susceptibility of an individual to autoimmune disease. Although common genetic pathways affect general immunological tolerance mechanisms in autoimmunity, the effects of such genes could vary under distinct immune challenges within different tissues. In this study, we demonstrate this by observing that autoimmune type 1 diabetes-protective haplotypes at the insulin-dependent diabetes susceptibility region 10 (Idd10) introgressed from chromosome 3 of C57BL/6 (B6) and A/J mice onto the NOD background increase the severity of autoimmune primary biliary cirrhosis induced by infection with Novosphingobium aromaticivorans, a ubiquitous alphaproteobacterium, when compared with mice having the NOD and NOD.CAST Idd10 type 1 diabetes-susceptible haplotypes. Substantially increased liver pathology in mice having the B6 and A/J Idd10 haplotypes correlates with reduced expression of CD101 on dendritic cells, macrophages, and granulocytes following infection, delayed clearance of N. aromaticivorans, and the promotion of overzealous IFN-γ- and IL-17-dominated T cell responses essential for the adoptive transfer of liver lesions. CD101-knockout mice generated on the B6 background also exhibit substantially more severe N. aromaticivorans-induced liver disease correlating with increased IFN-γ and IL-17 responses compared with wild-type mice. These data strongly support the hypothesis that allelic variation of the Cd101 gene, located in the Idd10 region, alters the severity of liver autoimmunity induced by N. aromaticivorans.


Asunto(s)
Antígenos CD/genética , Predisposición Genética a la Enfermedad/genética , Infecciones por Bacterias Gramnegativas/inmunología , Hepatitis Autoinmune/inmunología , Cirrosis Hepática Biliar/inmunología , Sphingomonadaceae/inmunología , Animales , Antígenos CD/inmunología , Femenino , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/patología , Hepatitis Autoinmune/genética , Hepatitis Autoinmune/microbiología , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Transgénicos , Índice de Severidad de la Enfermedad
5.
J Immunol ; 187(1): 325-36, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21613616

RESUMEN

We have previously proposed that sequence variation of the CD101 gene between NOD and C57BL/6 mice accounts for the protection from type 1 diabetes (T1D) provided by the insulin-dependent diabetes susceptibility region 10 (Idd10), a <1 Mb region on mouse chromosome 3. In this study, we provide further support for the hypothesis that Cd101 is Idd10 using haplotype and expression analyses of novel Idd10 congenic strains coupled to the development of a CD101 knockout mouse. Susceptibility to T1D was correlated with genotype-dependent CD101 expression on multiple cell subsets, including Foxp3(+) regulatory CD4(+) T cells, CD11c(+) dendritic cells, and Gr1(+) myeloid cells. The correlation of CD101 expression on immune cells from four independent Idd10 haplotypes with the development of T1D supports the identity of Cd101 as Idd10. Because CD101 has been associated with regulatory T and Ag presentation cell functions, our results provide a further link between immune regulation and susceptibility to T1D.


Asunto(s)
Antígenos CD/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Animales , Antígenos CD/biosíntesis , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Células CHO , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Ratones , Ratones Congénicos , Ratones Endogámicos A , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Datos de Secuencia Molecular
6.
Vet Parasitol ; 301: 109634, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34864364

RESUMEN

Production losses, mortality, and control measures associated with coccidiosis, caused by Eimera species, cost the broiler industry over $14 billion a year. Current means to distinguish Eimeria species such as oocyst morphology, pre-patent period and site of infection are subjective, labor intensive or unsuitable for high-throughput applications. Although Polymerase Chain Reaction (PCR) techniques have been validated, the target gene cannot differentiate relative abundance of each species in mixed infections. In this study, we developed a non-antibody-based flow cytometry high throughput method to simultaneously enumerate and speciate four Eimeria species, E. acervulina, E. mitis, E. maxima, and E. tenella, using commercial coccidia vaccine as well as field fecal samples. Our findings showed that the four Eimeria oocyst populations could be distinctly speciated based on their size and granularity (shape) via scatter plotting. These distinct populations were sorted and confirmed by quantitative real-time PCR assay. Finally, the flow cytometry findings were applied to enumerate and speciate oocysts from fecal samples collected from commercial broiler flocks vaccinated for coccidiosis at day of hatch and the results were validated against the conventional manual method of floatation and microscopic examination. Collectively, the findings of this study suggested that non-antibody based Flow Cytometry technique can be successful in the simultaneous enumeration and speciation of coccidia. Further development and validation is needed to make this diagnostic tool useful for field applications at a much larger scale as well as to speciate other Eimeria species.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Animales , Pollos , Coccidiosis/veterinaria , Eimeria/genética , Citometría de Flujo/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
7.
Expert Rev Clin Immunol ; 5(4): 369-379, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20161124

RESUMEN

Despite having long been postulated, compelling evidence for the theory that microbial triggers drive autoimmunity has only recently been reported. A specific association between Novosphingobium aromaticivorans, an ubiquitous alphaproteobacterium, and primary biliary cirrhosis (PBC) has been uncovered in patients with PBC. Notably, the association between Novosphingobium infection and PBC has been confirmed in a mouse model in which infection leads to the development of liver lesions resembling PBC concomitant with the production of anti-PDC-E2 antibodies that cross-react with conserved PDC-E2 epitopes shared by Novosphingobium. The discovery of infectious triggers of autoimmunity is likely to change our current concepts about the etiology of various autoimmune syndromes and may suggest new and simpler ways to diagnose and treat these debilitating diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA