Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34278, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39082039

RESUMEN

In this experiment, F1s produced from a 7 × 7 half-diallel cross along with their parents were evaluated to develop high yielding and saline-tolerant barley lines. The investigation focused on the general combining ability (GCA) of parents, specific combining ability (SCA) of offspring, genetic action, and heterosis of eight quantitative variables. Genetic analysis and potence ratio suggested that different degrees of dominance controlling the inheritance of the studied traits. Significant GCA and SCA variances suggested the presence of both additive and non-additive gene actions controlling the traits. However, a GCA:SCA ratio lower than 1 indicated the preponderance of the non-additive gene action involved in the expression of the traits. The parents P5 and P6 possess the genetic potential favorable for early and short stature in their F1s. Conversely, P2 and P4 were more likely to produce short F1s with high yield potential. Based on the mean performance, SCA, and heterobeltiosis, crosses P2 × P3, P2 × P7, P3 × P4, P4 × P5, P5 × P6, and P6 × P7 were selected as promising F1s for earliness, short stature, and high yield potential. These crosses are recommended for further breeding to obtain early-maturing and high-yielding segregants. To identify saline-tolerant F1s, screening was conducted in saline media prepared in half-strength Hoagland solution. The salinity stress involved exposing F1s to 100 mM NaCl for first 10 days, and followed by an increase to 150 mM until maturity. Among the F1s, five crosses (P1 × P2, P2 × P3, P3 × P5, P4 × P6, and P4 × P7) exhibited promising signs of saline tolerance based on a comprehensive evaluation of healthy seed set, K+/Na+ ratio, root volume, generation of reactive oxygen species (O2 •- and H2O2), and activities of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR). These crosses will undergo further evaluation in the next filial generation to confirm heritable saline tolerance.

2.
Heliyon ; 10(5): e26920, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468963

RESUMEN

The aim of the study is to examine the relationship between oxidative bursts, their regulation with ion homeostasis, and NADPH oxidase (NOX) in different salt-sensitive maize genotypes. For this, in the first study, four differently salt-sensitive maize genotypes (BIL214 × BIL218 as tolerant, BHM-5 as sensitive, and BHM-7 and BHM-9 as moderate-tolerant) were selected on the basis of phenotype, histochemical detection of reactive oxygen species (ROS), malondialdehyde (MDA) content, and specific and in-gel activity of NOX. In the next experiment, these genotypes were further examined in 200 mM NaCl solution in half-strength Hoagland media for nine days to study salt-induced changes in NOX activity, ROS accumulation, ion and redox homeostasis, the activity of antioxidants and their isozyme responses, and to find out potential relationships among the traits. Methylglyoxal (MG) and glyoxalse enzymes (Gly I and II) were also evaluated. Fully expanded leaf samplings were collected at 0 (control), 3, 6, 9-day, and after 7 days of recovery to assay different parameters. Na+/K+, NOX, ROS, and MDA contents increased significantly with the progression of stress duration in all maize genotypes, with a significantly higher value in BHM-5 as compared to tolerant and moderate-tolerant genotypes. A continual induction of Cu/Zn-SOD was observed in BIL214 × BIL218 due to salt stress. Substantial decreases in CAT2 and CAT3 isozymes in BHM-5 might be critical for the highest H2O2 burst in that sensitive genotype under salt stress. The highest intensified POD isozymes were visualized in BHM-5, BHM-7, and BHM-9, whereas BIL214 × BIL218 showed a continual induction of POD isozymes, although GPX activity decreased in all the genotypes at 9 days. Under salt stress, the tolerant genotype BIL214 × BIL218 showed superior ASA- and GSH-redox homeostasis by keeping GR and MDHAR activity high. This genotype also had a stronger MG detoxification system by having higher glyoxalase activity. Correlation, comparative heatmap, and PCA analyses revealed positive correlations among Na+/K+, NOX, O2•-, H2O2, MG, proline, GR, GST, and Gly I activities. Importantly, the relationship depends on the salt sensitivity of the genotypes. The reduced CAT activity as well as redox homeostasis were critical to the survival of the sensitive genotype.

3.
Heliyon ; 10(19): e38623, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39397944

RESUMEN

Elevated atmospheric heat is considered as one of the bottlenecks for global wheat production. Screening potential wheat genotypes against heat stress and selecting some suitable indicators to assist in understanding thermotolerance could be crucial for sustaining wheat cultivation. Accordingly, 80 diverse bread wheat genotypes were evaluated in controlled lab condition by imposing a week-long heat stress (35/25 °C D/N) at the seedling stage. The response of heat stress was evaluated using multivariate analysis techniques on 20 morpho-physiological traits. Results showed significant variations in the studied traits due to the imposition of heat stress. Eleven seedling traits that contributed significantly to the genotypic variability were identified using principal component analysis (PCA). A substantial correlation between most of the selected seedling attributes was observed. Hierarchical cluster analysis identified three distinct clusters among the tested wheat genotypes. Cluster 1, consisting of 33 genotypes, exhibited the highest tolerance to heat stress, followed by Cluster 2 (18 genotypes) with moderate tolerance and Cluster 3 (29 genotypes) showing susceptibility. Linear discriminant analysis (LDA) approved that nearly 93 % of the wheat genotypes were appropriately ascribed to each cluster. The squared distance analysis confirmed the distinct nature of the clusters. Using multi-trait genotype-ideotype distance index (MGIDI), all 12 identified tolerant genotypes (BG-30, BD-468, BG-24, BD-9908, BG-32, BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS-10627) originated from Cluster 1. Selection gain in MGIDI analysis, broad-sense heritability, and multiple linear regression analysis together identified shoot and root dry and fresh weights, chlorophyll contents (a and total), shoot tissue water content, root-shoot dry weight ratio, and efficiency of photosystem II (PS II) as the most vital discriminatory factors explaining heat stress tolerance of 80 wheat genotypes. The identified genotypes with superior thermotolerance would offer resourceful genetic tools for breeders to improve wheat yield in warmer regions. The traits found to have greater contribution in explaining heat stress tolerance will be equally important in prioritizing future research endeavors.

4.
Heliyon ; 9(11): e21629, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027610

RESUMEN

Drought is a major abiotic stress that severely limits sustainable wheat (Triticum aestivum L.) productivity via morphological and physio-biochemical alterations of cellular processes. The complex nature and polygenic control of drought tolerance traits make breeding tolerant genotypes quite challenging. However, naturally occurring variabilities among wheat germplasm resources could potentially help combating drought. The present study was conducted to assess the drought tolerance of 18 Bangladeshi hexaploid wheat genotypes, focusing on the identification of potent sources of diversity by combining microsatellite markers, also known as single sequence repeat markers, and morpho-physiological characteristics that might help accelerating wheat crop improvement programs. Initially, the genotypes were evaluated using 25 microsatellite markers followed by an on-field evaluation of 7 morphological traits (plant height, spike number, spike length, grains per spike, 1000-grain weight, grain yield, biological yield) and 6 physiological traits (SPAD value, membrane stability index, leaf relative water content, proline content, canopy temperature depression, and leaf K+ ion content). The field-trial was conducted in a factorial fashion of 18 wheat genotypes and two water regimes (control and drought) following a split-plot randomized complete block design. Regardless of genotype, drought was significantly damaging for all the tested traits; however, substantial variability in drought stress tolerance was evident among the genotypes. Spike length, 1000-grain weight, SPAD value, leaf relative water content, canopy temperature depression, proline content, and potassium (K+) ion content were the most representative of drought-induced growth and yield impairments and also correlated well with the contrasting ability of genotypic tolerance. Microsatellite markers amplified 244 alleles exhibiting 79% genetic diversity. Out of 25 markers, 23 was highly polymorphic showing 77% average polymorphism. Morpho-physiological trait-based hierarchical clustering and microsatellite marker-based neighbor-jointing clustering both revealed three genotypic clusters with 71% co-linearity between them. In both cases, the genotypes Kanchan, BAW-1147, BINA Gom 1, BARI Gom 22, BARI Gom 26, and BARI Gom 33 were found to be comparatively more tolerant than the other tested genotypes, showing potential for cultivation in water-deficit environments. The findings of this study would contribute to the present understanding of drought tolerance in wheat and would provide a basis for future genotype selection for drought-tolerant wheat breeding programs.

5.
Protoplasma ; 260(1): 63-76, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35397668

RESUMEN

A 2NvS chromosomal segment carrying bread wheat variety, BARI Gom 33 ('BG33'), showed tolerance to terminal heat stress and higher yield over a heat-tolerant non-2NvS BARI Gom 26 ('BG26') and a heat-susceptible Pavon 76 ('Pavon'). This study aimed to ascertain the potential of the 2NvS 'BG33' in terminal heat-induced oxidative stress tolerance compared to non-2NvS 'BG26' and heat-susceptible 'Pavon' under two heat regimes at the reproductive stages viz. control (optimum sowing time) and heat stress (late sowing). We found that both 'BG26' and 'BG33' showed significantly higher tolerance to oxidative stress by limiting the generation of reactive oxygen species (ROS), methylglyoxal under heat stress. During terminal heat stress, both 'BG33' and 'BG26' exhibited greater cellular homeostasis than heat-susceptible 'Pavon', which was maintained by the increased accumulation of osmolytes, nonenzymatic antioxidants, and enzymes associated with ROS scavenging, ascorbate-glutathione cycle, and glyoxalase system. Lesser cellular damage in 'BG26' and 'BG33' was eventually imitated in a smaller reduction in grain yield (15 and 12%, respectively) than in 'Pavon', which had a 33% reduction owing to heat stress. Collectively, our findings revealed that the chromosomal segment 2NvS provides yield advantage to 'BG33' under terminal heat stress by lowering oxidative damage. As 2NvS translocation contains multiple nucleotide-binding domain leucine-rich repeat containing, cytochrome P450, and other gene families associated with plant stress tolerance, further studies are warranted to dissect the underlying molecular mechanisms associated with higher heat stress tolerance of 2NvS carrying 'BG33'.


Asunto(s)
Estrés Oxidativo , Triticum , Especies Reactivas de Oxígeno , Triticum/genética , Triticum/metabolismo , Respuesta al Choque Térmico/genética , Antioxidantes/metabolismo
6.
PeerJ ; 10: e12862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186468

RESUMEN

BACKGROUND: Mungbean (Vigna radiata L. Wilczek) is one of the most important pulse crops, well-known for its protein-rich seeds. Growth and productivity are severely undermined by waterlogging. METHODS: In this study, we aim to evaluate how two promising phytohormones, namely cytokinin (CK) and gibberellic acid (GA3), can improve waterlogging tolerance in mungbean by investigating key morphological, physiological, biochemical, and yield-related attributes. RESULTS: Our results showed that foliar application of CK and GA3 under 5-day of waterlogged conditions improved mungbean growth and biomass, which was associated with increased levels of photosynthetic rate and pigments. Waterlogged-induced accumulation of reactive oxygen species and the consequently elevated levels of malondialdehyde were considerably reduced by CK and GA3 treatments. Mungbean plants sprayed with either CK or GA3 suffered less oxidative stress due to the enhancement of total phenolics and flavonoids levels. Improvement in the contents of proline and total soluble sugars indicated a better osmotic adjustment following CK and GA3 treatments in waterlogged-exposed plants. Most fundamentally, CK or GA3-sprayed waterlogged-stressed mungbean plants demonstrated better performance in the aforementioned parameters after the 15-day recovery period as compared to water-sprayed waterlogged-exposed plants. Our results also revealed that CK and GA3 treatments increased yield-associated features in the waterlogged-stressed plant. Here, both phytohormones are efficient in improving mungbean resistance to waterlogging. However, CK was found to be more effective. Overall, our findings suggested that CK or GA3 could be used for managing waterlogging-induced damage to mungbean and perhaps in other cash crops.


Asunto(s)
Fabaceae , Vigna , Reguladores del Crecimiento de las Plantas/farmacología , Citocininas/farmacología
7.
PeerJ ; 10: e14421, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452074

RESUMEN

Drought stress is a major issue impacting wheat growth and yield worldwide, and it is getting worse as the world's climate changes. Thus, selection for drought-adaptive traits and drought-tolerant genotypes are essential components in wheat breeding programs. The goal of this study was to explore how spectral reflectance indices (SRIs) and yield traits in wheat genotypes changed in irrigated and water-limited environments. In two wheat-growing seasons, we evaluated 56 preselected wheat genotypes for SRIs, stay green (SG), canopy temperature depression (CTD), biological yield (BY), grain yield (GY), and yield contributing traits under control and drought stress, and the SRIs and yield traits exhibited higher heritability (H2) across the growing years. Diverse SRIs associated with SG, pigment content, hydration status, and aboveground biomass demonstrated a consistent response to drought and a strong association with GY. Under drought stress, GY had stronger phenotypic correlations with SG, CTD, and yield components than in control conditions. Three primary clusters emerged from the hierarchical cluster analysis, with cluster I (15 genotypes) showing minimal changes in SRIs and yield traits, indicating a relatively higher level of drought tolerance than clusters II (26 genotypes) and III (15 genotypes). The genotypes were appropriately assigned to distinct clusters, and linear discriminant analysis (LDA) demonstrated that the clusters differed significantly. It was found that the top five components explained 73% of the variation in traits in the principal component analysis, and that vegetation and water-based indices, as well as yield traits, were the most important factors in explaining genotypic drought tolerance variation. Based on the current study's findings, it can be concluded that proximal canopy reflectance sensing could be used to screen wheat genotypes for drought tolerance in water-starved environments.


Asunto(s)
Sequías , Triticum , Triticum/genética , Pan , Fitomejoramiento , Genotipo , Agua
8.
Plants (Basel) ; 10(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34685876

RESUMEN

Drought stress impairs the normal growth and development of plants through various mechanisms including the induction of cellular oxidative stresses. The aim of this study was to evaluate the effect of the exogenous application of methyl jasmonate (MeJA) and salicylic acid (SA) on the growth, physiology, and antioxidant defense system of drought-stressed French bean plants. Application of MeJA (20 µM) or SA (2 mM) alone caused modest reductions in the harmful effects of drought. However, combined application substantially enhanced drought tolerance by improving the physiological activities and antioxidant defense system. The drought-induced generation of O2●- and H2O2, the MDA content, and the LOX activity were significantly lower in leaves when seeds or leaves were pre-treated with a combination of MeJA (10 µM) and SA (1 mM) than with either hormone alone. The combined application of MeJA and SA to drought-stressed plants also significantly increased the activities of the major antioxidant enzymes superoxide dismutase, catalase, peroxidase, glutathione peroxidase, and glutathione-S-transferase as well as the enzymes of the ascorbate-glutathione cycle. Taken together, our results suggest that seed or foliar application of a combination of MeJA and SA restore growth and normal physiological processes by triggering the antioxidant defense system in drought-stressed plants.

9.
Plants (Basel) ; 10(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925375

RESUMEN

Drought is one of the foremost environmental stresses that can severely limit crop growth and productivity by disrupting various physiological processes. In this study, the drought tolerance potential of 127 diverse bread wheat genotypes was evaluated by imposing polyethylene glycol (PEG)-induced drought followed by multivariate analysis of several growth-related attributes. Results showed significant variations in the mean values of different morpho-physiological traits due to PEG-induced drought effects. Correlation analysis revealed that most of the studied traits were significantly correlated among them. The robust hierarchical co-clustering indicated that all the genotypes were clustered into four major groups, with cluster 4 (26 genotypes) being, in general, drought-tolerant followed by cluster 1 (19 genotypes) whereas, cluster 2 (55 genotypes) and 3 (27 genotypes) being drought-sensitive. Linear discriminant analysis (LDA) confirmed that around 90% of the genotypes were correctly assigned to clusters. Squared distance (D2) analysis indicated that the clusters differed significantly from each other. Principal component analysis (PCA) and genotype by trait biplot analysis showed that the first three components accounted for 71.6% of the total variation, with principal component (PC) 1 accounting for 35.4%, PC2 for 24.6% and PC3 for 11.6% of the total variation. Both PCA and LDA revealed that dry weights, tissue water content, cell membrane stability, leaf relative water content, root-shoot weight ratio and seedling vigor index played the most important discriminatory roles in explaining drought tolerance variations among 127 wheat genotypes. Our results conclude that the drought-tolerant and -sensitive wheat genotypes identified in this study would offer valuable genetic tools for further improvement of wheat productivity in arid and semi-arid regions during this time of unpredictable climate change.

10.
PeerJ ; 9: e12419, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34824915

RESUMEN

Liverwort Marchantia polymorpha is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort's model M. polymorpha. The gemmae, asexual reproductive units of M. polymorpha, were exposed to sucrose (0.2 M), mannitol (0.5 M) and polyethylene glycol (PEG, 10%) for inducing physiological drought to investigate their effects at morphological, physiological and biochemical levels. Our results showed that drought exposure led to extreme growth inhibition, disruption of membrane stability and reduction in photosynthetic pigment contents in M. polymorpha. The increased accumulation of hydrogen peroxide and malondialdehyde, and the rate of electrolyte leakage in the gemmalings of M. polymorpha indicated an evidence of drought-caused oxidative stress. The gemmalings showed significant induction of the activities of key antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase and glutathione S-transferase, and total antioxidant activity in response to increased oxidative stress under drought. Importantly, to counteract the drought effects, the gemmalings also accumulated a significant amount of proline, which coincided with the evolutionary presence of proline biosynthesis gene Δ1-pyrroline-5-carboxylate synthase 1 (P5CS1) in land plants. Furthermore, the application of exogenous abscisic acid (ABA) reduced drought-induced tissue damage and improved the activities of antioxidant enzymes and accumulation of proline, implying an archetypal role of this phytohormone in M. polymorpha for drought tolerance. We conclude that physiological drought tolerance mechanisms governed by the cellular antioxidants, proline and ABA were adopted in liverwort M. polymorpha, and that these findings have important implications in aiding our understanding of osmotic stress acclimation processes in land plants.

11.
Antioxidants (Basel) ; 10(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652954

RESUMEN

Heat stress alters photosynthetic components and the antioxidant scavenging system, negatively affecting plant growth and development. Plants overcome heat stress damage through an integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess physiological and biochemical responses in contrasting thermo-tolerant wheat varieties exposed to 25 °C (control) and 35 °C (heat stress), during the seedling stage. Our results revealed a substantial decrease in the photosynthetic pigments, carotenoids, anthocyanin content, and increased membrane injury index, malondialdehyde, methylglyoxal (MG), H2O2 contents and lipoxygenase activity compared to non-stress wheat seedlings. The heat-tolerant variety BARI Gom 26 ("BG26") maintained higher cellular homeostasis compared to the heat susceptible variety Pavon 76 ("Pavon"), perpetuated by higher accumulation of proline, glycine betaine, ascorbate-glutathione cycle associated enzymes, reduced glutathione and ascorbate concentration in plant cells. Significantly lower levels of MG detoxification and antioxidant activities and ascorbate-glutathione cycle-related enzymatic activities lead to increased susceptibility in variety "Pavon". Hierarchical clustering and principal component analysis revealed that variety "BG26" possess a combination of biochemical responses tailoring antioxidant activities that induced a higher level of tolerance. Taken together, our results provide a pipeline for establishing a trade-off between antioxidant capacity and heat tolerance to facilitate functional genomics and translational research to unravel underlying mechanisms to better adapt wheat to heat stress.

12.
J Biotechnol ; 325: 109-118, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33188807

RESUMEN

Complete submergence (Sub) imposes detrimental effects on growth and survival of crop plants, including rice. Here, we investigated the beneficial effects of reduced glutathione (GSH) in mitigating Sub-induced adverse effects in two high-yielding rice cultivars BRRI dhan29 and dhan52. Both cultivars experienced growth defects, severe yellowing, necrosis and chlorosis, when they were completely immersed in water for 14 days. The poor growth performance of these cultivars was linked to biomass reduction, decreased levels of photosynthetic pigments and proline, increased levels of H2O2 and malondialdehyde, and declined activities of enzymatic antioxidants like superoxide dismutase, ascorbate peroxidase, peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Pretreatment with exogenous GSH led to significant growth restoration in both cultivars exposed to Sub. The elevated Sub-tolerance promoted by GSH could partly be attributed to increased levels of chlorophylls, carotenoids, soluble proteins and proline. Exogenous GSH also mitigated Sub-induced oxidative damage, as evidenced from reduced levels of H2O2 and malondialdehyde in accordance with the increased activities of antioxidant enzymes. Results revealed that dhan52 was more tolerant to Sub-stress than dhan29, and GSH successfully rescued both cultivars from the damage of Sub-stress. Collectively, our findings provided an insight into the GSH-mediated active recovery of rice from Sub-stress, thereby suggesting that external supply of GSH may be an effective strategy to mitigate the adverse effects of Sub in rice.


Asunto(s)
Glutatión , Oryza , Antioxidantes , Catalasa/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno , Oryza/metabolismo , Estrés Oxidativo , Plantones/metabolismo , Superóxido Dismutasa/metabolismo
13.
PLoS One ; 13(9): e0203769, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30192877

RESUMEN

Strawberry is a well-known source of natural antioxidants with excellent free radical scavenging capacity. This study determined the effects of chitosan application in field condition on plant growth, fruit yield and antioxidant activities in strawberry fruit. Foliar applications of chitosan on strawberry significantly increased plant growth and fruit yield (up to 42% higher) compared to untreated control. Increased fruit yield was attributed to higher plant growth, individual fruit weight and total fruit weight/plant due to the chitosan application. Surprisingly, the fruit from plants sprayed with chitosan also had significantly higher contents (up to 2.6-fold) of carotenoids, anthocyanins, flavonoids and phenolics compared to untreated control. Total antioxidant activities in fruit of chitosan treated plants were also significantly higher (ca. 2-fold) (p< 0.05) than untreated control. To the best of our knowledge, this is the first report of chitosan applied on field plants providing significant improvement of both yield and health benefiting biochemical contents in strawberry fruit. Further study on the elucidation of mechanisms involved with enhancement of growth, yield and biochemical contents by chitosan is needed to promote sustainable production of strawberry.


Asunto(s)
Antioxidantes/metabolismo , Quitosano/farmacología , Fragaria/efectos de los fármacos , Fragaria/metabolismo , Frutas/efectos de los fármacos , Frutas/metabolismo , Biomasa , Fragaria/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
14.
Sci Rep ; 8(1): 2504, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410436

RESUMEN

Strawberry is an excellent source of natural antioxidants with high capacity of scavenging free radicals. This study evaluated the effects of two plant probiotic bacteria, Bacillus amylolequefaciens BChi1 and Paraburkholderia fungorum BRRh-4 on growth, fruit yield and antioxidant contents in strawberry fruits. Root dipping of seedlings (plug plants) followed by spray applications of both probiotic bacteria in the field on foliage significantly increased fruit yield (up to 48%) over non-treated control. Enhanced fruit yield likely to be linked with higher root and shoot growth, individual and total fruit weight/plant and production of phytohormone by the probiotic bacteria applied on plants. Interestingly, the fruits from plants inoculated with the isolates BChi1 and BRRh-4 had significantly higher contents of phenolics, carotenoids, flavonoids and anthocyanins over non-treated control. Total antioxidant activities were also significantly higher (p < 0.05) in fruits of strawberry plants treated with both probiotic bacteria. To the best of our knowledge, this is the first report of significant improvement of both yield and quality of strawberry fruits by the application of plant probiotic bacteria BChi1 and BRRh-4 in a field condition. Further study is needed to elucidate underlying mechanism of growth and quality improvement of strawberry fruits by probiotic bacteria.


Asunto(s)
Bacillus , Burkholderiaceae , Fragaria/microbiología , Probióticos , Antioxidantes/metabolismo , Fragaria/química , Fragaria/crecimiento & desarrollo , Frutas/química , Frutas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA