Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 321(1): H149-H160, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34018852

RESUMEN

Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to cardiac dysfunction, which is a significant cause of age-related heart failure. The hypothesis tested is that TTR affects cardiac fibroblasts in ways that may contribute to fibrosis. When primary cardiac fibroblasts were cultured on TTR-deposited substrates, the F-actin cytoskeleton was disorganized, focal adhesion formation was decreased, and nuclear shape was flattened. Fibroblasts had faster collective and single-cell migration velocities on TTR-deposited substrates. In addition, fibroblasts cultured on microposts with TTR deposition had reduced attachment and increased proliferation above untreated. Transcriptomic and proteomic analyses of fibroblasts grown on glass covered with TTR showed significant upregulation of inflammatory genes after 48 h, indicative of progression in TTR-based diseases. Together, results suggest that TTR deposited in tissue extracellular matrix may affect the structure, function, and gene expression of cardiac fibroblasts. As therapies for wtATTR are cost-prohibitive and only slow disease progression, better understanding of cellular maladaptation may elucidate novel therapeutic targets.NEW & NOTEWORTHY Transthyretin (TTR) cardiac amyloidosis involves deposition of fibrils of misfolded TTR in the aging human heart, leading to cardiac dysfunction and heart failure. Our novel in vitro studies show that TTR fibrils alter primary cardiac fibroblast cytoskeletal and nuclear structure and focal adhesion formation. Furthermore, both fibrillar and tetrameric TTR significantly increased cellular migration velocity and caused upregulation of inflammatory genes determined by transcriptomic RNA and protein analysis. These findings may suggest new therapeutic approaches.


Asunto(s)
Neuropatías Amiloides Familiares/metabolismo , Amiloide/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Inflamación/genética , Miocardio/metabolismo , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/patología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Matriz Extracelular/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Miocardio/patología
2.
Nanomedicine ; 34: 102365, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571682

RESUMEN

After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Nanomedicina , Enfermedades Cardiovasculares/patología , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Humanos , Cicatrización de Heridas
3.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798333

RESUMEN

Heart failure (HF) is a global public health burden and associated with significant morbidity and mortality. HF can result as a complication following myocardial infarction (MI), with cardiac fibrosis forming in the myocardium as a response to injury. The dense, avascular scar tissue that develops in the myocardium after injury following MI creates an inhospitable microenvironment that hinders cellular function, survival, and recruitment, thus severely limiting tissue regeneration. We have previously demonstrated the ability of hyaluronic acid (HA) polymer microrods to modulate fibroblast phenotype using discrete biophysical cues and to improve cardiac outcomes after implantation in rodent models of ischemia-reperfusion MI injury. Here, we developed a dual-pronged biochemical and biophysical therapeutic strategy leveraging bioactive microrods to more robustly attenuate cardiac fibrosis after acute myocardial injury. Incorporation of the anti-fibrotic proteoglycan decorin within microrods led to sustained release of decorin over one month in vitro and after implantation, resulted in marked improvement in cardiac function and ventricular remodeling, along with decreased fibrosis and cardiomyocyte hypertrophy. Together, this body of work aims to contribute important knowledge to help develop rationally designed engineered biomaterials that may be used to successfully treat cardiovascular diseases.

4.
NPJ Regen Med ; 8(1): 60, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872196

RESUMEN

Heart failure (HF) remains a global public health burden and often results following myocardial infarction (MI). Following injury, cardiac fibrosis forms in the myocardium which greatly hinders cellular function, survival, and recruitment, thus severely limits tissue regeneration. Here, we leverage biophysical microstructural cues made of hyaluronic acid (HA) loaded with the anti-fibrotic proteoglycan decorin to more robustly attenuate cardiac fibrosis after acute myocardial injury. Microrods showed decorin incorporation throughout the entirety of the hydrogel structures and exhibited first-order release kinetics in vitro. Intramyocardial injections of saline (n = 5), microrods (n = 7), decorin microrods (n = 10), and free decorin (n = 4) were performed in male rat models of ischemia-reperfusion MI to evaluate therapeutic effects on cardiac remodeling and function. Echocardiographic analysis demonstrated that rats treated with decorin microrods (5.21% ± 4.29%) exhibited significantly increased change in ejection fraction (EF) at 8 weeks post-MI compared to rats treated with saline (-4.18% ± 2.78%, p < 0.001) and free decorin (-3.42% ± 1.86%, p < 0.01). Trends in reduced end diastolic volume were also identified in decorin microrod-treated groups compared to those treated with saline, microrods, and free decorin, indicating favorable ventricular remodeling. Quantitative analysis of histology and immunofluorescence staining showed that treatment with decorin microrods reduced cardiac fibrosis (p < 0.05) and cardiomyocyte hypertrophy (p < 0.05) at 8 weeks post-MI compared to saline control. Together, this work aims to contribute important knowledge to guide rationally designed biomaterial development that may be used to successfully treat cardiovascular diseases.

5.
Cell Stem Cell ; 29(5): 692-721, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483364

RESUMEN

The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.


Asunto(s)
Materiales Biocompatibles , Trasplante de Células Madre , Diferenciación Celular , Medicina Regenerativa
6.
Bioconjug Chem ; 22(10): 2048-59, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-21877749

RESUMEN

A modular system for the construction of radiometalated antibodies was developed based on the bioorthogonal cycloaddition reaction between 3-(4-benzylamino)-1,2,4,5-tetrazine and the strained dienophile norbornene. The well-characterized, HER2-specific antibody trastuzumab and the positron emitting radioisotopes (64)Cu and (89)Zr were employed as a model system. The antibody was first covalently coupled to norbornene, and this stock of norbornene-modified antibody was then reacted with tetrazines bearing the chelators 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) or desferrioxamine (DFO) and subsequently radiometalated with (64)Cu and (89)Zr, respectively. The modification strategy is simple and robust, and the resultant radiometalated constructs were obtained in high specific activity (2.7-5.3 mCi/mg). For a given initial stoichiometric ratio of norbornene to antibody, the (64)Cu-DOTA- and (89)Zr-DFO-based probes were shown to be nearly identical in terms of stability, the number of chelates per antibody, and immunoreactivity (>93% in all cases). In vivo PET imaging and acute biodistribution experiments revealed significant, specific uptake of the (64)Cu- and (89)Zr-trastuzumab bioconjugates in HER2-positive BT-474 xenografts, with little background uptake in HER2-negative MDA-MB-468 xenografts or other tissues. This modular system-one in which the divergent point is a single covalently modified antibody stock that can be reacted selectively with various chelators-will allow for both greater versatility and more facile cross-comparisons in the development of antibody-based radiopharmaceuticals.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Química Clic/métodos , Compuestos Heterocíclicos con 1 Anillo/química , Norbornanos/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Animales , Anticuerpos Monoclonales Humanizados/farmacocinética , Línea Celular Tumoral , Femenino , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Humanos , Ratones , Ratones Desnudos , Neoplasias/diagnóstico por imagen , Norbornanos/farmacocinética , Radiofármacos/farmacocinética , Receptor ErbB-2/inmunología , Trastuzumab
7.
Biomaterials ; 169: 11-21, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29631164

RESUMEN

Repairing cardiac tissue after myocardial infarction (MI) is one of the most challenging goals in tissue engineering. Following ischemic injury, significant matrix remodeling and the formation of avascular scar tissue significantly impairs cell engraftment and survival in the damaged myocardium. This limits the efficacy of cell replacement therapies, demanding strategies that reduce pathological scarring to create a suitable microenvironment for healthy tissue regeneration. Here, we demonstrate the successful fabrication of discrete hyaluronic acid (HA)-based microrods to provide local biochemical and biomechanical signals to reprogram cells and attenuate cardiac fibrosis. HA microrods were produced in a range of physiological stiffness and shown to degrade in the presence of hyaluronidase. Additionally, we show that fibroblasts interact with these microrods in vitro, leading to significant changes in proliferation, collagen expression and other markers of a myofibroblast phenotype. When injected into the myocardium of an adult rat MI model, HA microrods prevented left ventricular wall thinning and improved cardiac function at 6 weeks post infarct.


Asunto(s)
Técnicas de Reprogramación Celular , Ácido Hialurónico , Microesferas , Infarto del Miocardio/terapia , Ingeniería de Tejidos , Animales , Línea Celular , Fibrosis/terapia , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/patología , Ratas , Ratas Sprague-Dawley
8.
ACS Nano ; 11(7): 6808-6816, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28625045

RESUMEN

The ability to generate heat under an alternating magnetic field (AMF) makes magnetic iron oxide nanoparticles (MIONs) an ideal heat source for biomedical applications including cancer thermoablative therapy, tissue preservation, and remote control of cell function. However, there is a lack of quantitative understanding of the mechanisms governing heat generation of MIONs, and the optimal nanoparticle size for magnetic fluid heating (MFH) applications. Here, we show that MIONs with large sizes (>20 nm) have a specific absorption rate (SAR) significantly higher than that predicted by the widely used linear theory of MFH. The heating efficiency of MIONs in both the superparamagnetic and ferromagnetic regimes increased with size, which can be accurately characterized with a modified dynamic hysteresis model. In particular, the 40 nm ferromagnetic nanoparticles have an SAR value approaching the theoretical limit under a clinically relevant AMF. An in vivo study further demonstrated that the 40 nm MIONs could effectively heat tumor tissues at a minimal dose. Our experimental results and theoretical analysis on nanoparticle heating offer important insight into the rationale design of MION-based MFH for therapeutic applications.

9.
Nanoscale ; 7(29): 12728-36, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26154916

RESUMEN

Superparamagnetic iron oxide (SPIO) nanoparticles have the potential for use as a multimodal cancer therapy agent due to their ability to carry anticancer drugs and generate localized heat when exposed to an alternating magnetic field, resulting in combined chemotherapy and hyperthermia. To explore this potential, we synthesized SPIOs with a phospholipid-polyethylene glycol (PEG) coating, and loaded Doxorubicin (DOX) with a 30.8% w/w loading capacity when the PEG length is optimized. We found that DOX-loaded SPIOs exhibited a sustained DOX release over 72 hours where the release kinetics could be altered by the PEG length. In contrast, the heating efficiency of the SPIOs showed minimal change with the PEG length. With a core size of 14 nm, the SPIOs could generate sufficient heat to raise the local temperature to 43 °C, sufficient to trigger apoptosis in cancer cells. Further, we found that DOX-loaded SPIOs resulted in cell death comparable to free DOX, and that the combined effect of DOX and SPIO-induced hyperthermia enhanced cancer cell death in vitro. This study demonstrates the potential of using phospholipid-PEG coated SPIOs for chemotherapy-hyperthermia combinatorial cancer treatment with increased efficacy.


Asunto(s)
Portadores de Fármacos/química , Compuestos Férricos/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/toxicidad , Dispersión Dinámica de Luz , Células HeLa , Humanos , Hipertermia Inducida , Magnetismo , Microscopía Confocal , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química , Temperatura
10.
J Nucl Med ; 54(8): 1389-96, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23708196

RESUMEN

UNLABELLED: The specificity of antibodies have made immunoconjugates promising vectors for the delivery of radioisotopes to cancer cells; however, their long pharmacologic half-lives necessitate the use of radioisotopes with long physical half-lives, a combination that leads to high radiation doses to patients. Therefore, the development of targeting modalities that harness the advantages of antibodies without their pharmacokinetic limitations is desirable. To this end, we report the development of a methodology for pretargeted PET imaging based on the bioorthogonal Diels-Alder click reaction between tetrazine and transcyclooctene. METHODS: A proof-of-concept system based on the A33 antibody, SW1222 colorectal cancer cells, and (64)Cu was used. The huA33 antibody was covalently modified with transcyclooctene, and a NOTA-modified tetrazine was synthesized and radiolabeled with (64)Cu. Pretargeted in vivo biodistribution and PET imaging experiments were performed with athymic nude mice bearing A33 antigen-expressing, SW1222 colorectal cancer xenografts. RESULTS: The huA33 antibody was modified with transcyclooctene to produce a conjugate with high immunoreactivity, and the (64)Cu-NOTA-labeled tetrazine ligand was synthesized with greater than 99% purity and a specific activity of 9-10 MBq/µg. For in vivo experiments, mice bearing SW1222 xenografts were injected with transcyclooctene-modified A33; after allowing 24 h for accumulation of the antibody in the tumor, the mice were injected with (64)Cu-NOTA-labeled tetrazine for PET imaging and biodistribution experiments. At 12 h after injection, the retention of uptake in the tumor (4.1 ± 0.3 percent injected dose per gram), coupled with the fecal excretion of excess radioligand, produced images with high tumor-to-background ratios. PET imaging and biodistribution experiments performed using A33 directly labeled with either (64)Cu or (89)Zr revealed that although absolute tumor uptake was higher with the directly radiolabeled antibodies, the pretargeted system yielded comparable images and tumor-to-muscle ratios at 12 and 24 h after injection. Further, dosimetry calculations revealed that the (64)Cu pretargeting system resulted in only a fraction of the absorbed background dose of A33 directly labeled with (89)Zr (0.0124 mSv/MBq vs. 0.4162 mSv/MBq, respectively). CONCLUSION: The high quality of the images produced by this pretargeting approach, combined with the ability of the methodology to dramatically reduce nontarget radiation doses to patients, marks this system as a strong candidate for clinical translation.


Asunto(s)
Anticuerpos/química , Química Clic , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Animales , Anticuerpos/metabolismo , Línea Celular Tumoral , Radioisótopos de Cobre , Ciclooctanos/química , Compuestos Heterocíclicos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Ratones , Piridinas/química , Radiofármacos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA