Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38236742

RESUMEN

The segregation of the cortical mantle into cytoarchitectonic areas provides a structural basis for the specialization of different brain regions. In vivo neuroimaging experiments can be linked to this postmortem cytoarchitectonic parcellation via Julich-Brain. This atlas embeds probabilistic maps that account for inter-individual variability in the localization of cytoarchitectonic areas in the reference spaces targeted by spatial normalization. We built a framework to improve the alignment of architectural areas across brains using cortical folding landmarks. This framework, initially designed for in vivo imaging, was adapted to postmortem histological data. We applied this to the first 14 brains used to establish the Julich-Brain atlas to infer a refined atlas with more focal probabilistic maps. The improvement achieved is significant in the primary regions and some of the associative areas. This framework also provides a tool for exploring the relationship between cortical folding patterns and cytoarchitectonic areas in different cortical regions to establish new landmarks in the remainder of the cortex.


Asunto(s)
Encéfalo , Neuroimagen , Autopsia , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
2.
Neuroimage ; 260: 119453, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35809885

RESUMEN

The human insular cortex supports multifunctional integration including interoceptive, sensorimotor, cognitive and social-emotional processing. Different concepts of the underlying microstructure have been proposed over more than a century. However, a 3D map of the cytoarchitectonic segregation of the insula in standard reference space, that could be directly linked to neuroimaging experiments addressing different cognitive tasks, is not yet available. Here we analyzed the middle posterior and dorsal anterior insula with image analysis and a statistical mapping procedure to delineate cytoarchitectonic areas in ten human postmortem brains. 3D-probability maps of seven new areas with granular (Ig3, posterior), agranular (Ia1, posterior) and dysgranular (Id2-Id6, middle to dorsal anterior) cytoarchitecture have been calculated to represent the new areas in stereotaxic space. A hierarchical cluster analysis based on cytoarchitecture resulted in three distinct clusters in the superior posterior, inferior posterior and dorsal anterior insula, providing deeper insights into the structural organization of the insula. The maps are openly available to support future studies addressing relations between structure and function in the human insula.


Asunto(s)
Corteza Cerebral , Procesamiento de Imagen Asistido por Computador , Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Neuroimagen , Probabilidad
3.
Cereb Cortex ; 29(6): 2552-2574, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850806

RESUMEN

The human pregenual anterior cingulate cortex (pACC) encompasses 7 distinct cyto- and receptorarchitectonic areas. We lack a detailed understanding of the functions in which they are involved, and stereotaxic maps are not available. We present an integrated structural/functional map of pACC based on probabilistic cytoarchitectonic mapping and meta-analytic connectivity modeling and quantitative functional decoding. Due to the restricted spatial resolution of functional imaging data relative to the microstructural parcellation, areas p24a of the callosal sulcus and p24b on the surface of the cingulate gyrus were merged into a "gyral component" (p24ab) of area p24, and areas pv24c, pd24cv, and pd24cd, located within the cingulate sulcus were merged into a "sulcal component" (p24c) for meta-analytic analysis. Area p24ab was specifically associated with interoception, p24c with the inhibition of action, and p32, which was also activated by emotion induction tasks pertaining negatively valenced stimuli, with the ability to experience empathy. Thus, area p32 could be classified as cingulate association cortex playing a crucial role in the cognitive regulation of emotion. By this spectrum of functions, pACC is a structurally and functionally heterogeneous region, clearly differing from other parts of the anterior and middle cingulate cortex.


Asunto(s)
Mapeo Encefálico/métodos , Giro del Cíngulo/anatomía & histología , Giro del Cíngulo/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Masculino , Persona de Mediana Edad
4.
Cereb Cortex ; 29(3): 1305-1327, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561508

RESUMEN

Human posterior intraparietal sulcus (pIPS) and adjacent posterior wall of parieto-occipital sulcus (POS) are functionally diverse, serving higher motor, visual and cognitive functions. Its microstructural basis, though, is still largely unknown. A similar or even more pronounced architectonical complexity, as described in monkeys, could be assumed. We cytoarchitectonically mapped the pIPS/POS in 10 human postmortem brains using an observer-independent, quantitative parcellation. 3D-probability maps were generated within MNI reference space and used for functional decoding and meta-analytic coactivation modeling based on the BrainMap database to decode the general structural-functional organization of the areas. Seven cytoarchitectonically distinct areas were identified: five within human pIPS, three on its lateral (hIP4-6) and two on its medial wall (hIP7-8); and two (hPO1, hOc6) in POS. Mediocaudal areas (hIP7, hPO1) were predominantly involved in visual processing, whereas laterorostral areas (hIP4-6, 8) were associated with higher cognitive functions, e.g. counting. This shift was mirrored by systematic changes in connectivity, from temporo-occipital to premotor and prefrontal cortex, and in cytoarchitecture, from prominent Layer IIIc pyramidal cells to homogeneous neuronal distribution. This architectonical mosaic within human pIPS/POS represents a structural basis of its functional and connectional heterogeneity. The new 3D-maps of the areas enable dedicated assessments of structure-function relationships.


Asunto(s)
Cognición/fisiología , Lóbulo Occipital/citología , Lóbulo Occipital/fisiología , Lóbulo Parietal/citología , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Vías Nerviosas/citología , Vías Nerviosas/diagnóstico por imagen , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Parietal/diagnóstico por imagen
5.
Cereb Cortex ; 27(1): 373-385, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26464475

RESUMEN

Areas of the fusiform gyrus (FG) within human ventral temporal cortex (VTC) process high-level visual information associated with faces, limbs, words, and places. Since classical cytoarchitectonic maps do not adequately reflect the functional and structural heterogeneity of the VTC, we studied the cytoarchitectonic segregation in a region, which is rostral to the recently identified cytoarchitectonic areas FG1 and FG2. Using an observer-independent and statistically testable parcellation method, we identify 2 new areas, FG3 and FG4, in 10 human postmortem brains on the mid-FG. The mid-fusiform sulcus reliably identifies the cytoarchitectonic transition between FG3 and FG4. We registered these cytoarchitectonic areas to the common reference space of the single-subject Montreal Neurological Institute (MNI) template and generated probability maps, which reflect the intersubject variability of both areas. Future studies can relate in vivo neuroimaging data with these microscopically defined cortical areas to functional parcellations. We discuss these results in the context of both large-scale functional maps and fine-scale functional clusters that have been identified within the human VTC. We propose that our observer-independent cytoarchitectonic parcellation of the FG better explains the functional heterogeneity of the FG compared with the homogeneity of classic cytoarchitectonic maps.


Asunto(s)
Lóbulo Temporal/anatomía & histología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Neuroimage ; 115: 177-90, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25937490

RESUMEN

Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region.


Asunto(s)
Corteza Cerebral/anatomía & histología , Vías Nerviosas/anatomía & histología , Adulto , Vías Aferentes/anatomía & histología , Vías Aferentes/fisiología , Anciano , Anciano de 80 o más Años , Amígdala del Cerebelo/anatomía & histología , Atlas como Asunto , Mapeo Encefálico , Cadáver , Cognición/fisiología , Emociones/fisiología , Femenino , Giro del Cíngulo/anatomía & histología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Dolor/fisiopatología , Corteza Sensoriomotora/anatomía & histología , Corteza Sensoriomotora/fisiología , Caracteres Sexuales
7.
Neuroimage ; 84: 453-65, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24021838

RESUMEN

Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7-40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitectonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Puntos Anatómicos de Referencia/anatomía & histología , Puntos Anatómicos de Referencia/fisiología , Reconocimiento Visual de Modelos/fisiología , Lóbulo Temporal/anatomía & histología , Lóbulo Temporal/fisiología , Adolescente , Adulto , Mapeo Encefálico/métodos , Niño , Preescolar , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
8.
Front Neuroimaging ; 3: 1339244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455685

RESUMEN

Areas of the dorsolateral prefrontal cortex (DLPFC) are part of the frontoparietal control, default mode, salience, and ventral attention networks. The DLPFC is involved in executive functions, like working memory, value encoding, attention, decision-making, and behavioral control. This functional heterogeneity is not reflected in existing neuroanatomical maps. For example, previous cytoarchitectonic studies have divided the DLPFC into two or four areas. Macroanatomical parcellations of this region rely on gyri and sulci, which are not congruent with cytoarchitectonic parcellations. Therefore, this study aimed to provide a microstructural analysis of the human DLPFC and 3D maps of cytoarchitectonic areas to help address the observed functional variability in studies of the DLPFC. We analyzed ten human post-mortem brains in serial cell-body stained brain sections and mapped areal boundaries using a statistical image analysis approach. Five new areas (i.e., SFG2, SFG3, SFG4, MFG4, and MFG5) were identified on the superior and middle frontal gyrus, i.e., regions corresponding to parts of Brodmann areas 9 and 46. Gray level index profiles were used to determine interregional cytoarchitectural differences. The five new areas were reconstructed in 3D, and probability maps were generated in commonly used reference spaces, considering the variability of areas in stereotaxic space. Hierarchical cluster analysis revealed a high degree of similarity within the identified DLPFC areas while neighboring areas (frontal pole, Broca's region, area 8, and motoric areas) were separable. Comparisons with functional imaging studies revealed specific functional profiles of the DLPFC areas. Our results indicate that the new areas do not follow a simple organizational gradient assumption in the DLPFC. Instead, they are more similar to those of the ventrolateral prefrontal cortex (Broca's areas 44, 45) and frontopolar areas (Fp1, Fp2) than to the more posterior areas. Within the DLPFC, the cytoarchitectonic similarities between areas do not seem to follow a simple anterior-to-posterior gradient either, but cluster along other principles. The new maps are part of the publicly available Julich Brain Atlas and provide a microstructural reference for existing and future imaging studies. Thus, our study represents a further step toward deciphering the structural-functional organization of the human prefrontal cortex.

9.
Front Neuroanat ; 18: 1331305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550712

RESUMEN

Introduction: The red nucleus is part of the motor system controlling limb movements. While this seems to be a function common in many vertebrates, its organization and circuitry have undergone massive changes during evolution. In primates, it is sub-divided into the magnocellular and parvocellular parts that give rise to rubrospinal and rubro-olivary connection, respectively. These two subdivisions are subject to striking variation within the primates and the size of the magnocellular part is markedly reduced in bipedal primates including humans. The parvocellular part is part of the olivo-cerebellar circuitry that is prominent in humans. Despite the well-described differences between species in the literature, systematic comparative studies of the red nucleus remain rare. Methods: We therefore mapped the red nucleus in cytoarchitectonic sections of 20 primate species belonging to 5 primate groups including prosimians, new world monkeys, old world monkeys, non-human apes and humans. We used Ornstein-Uhlenbeck modelling, ancestral state estimation and phylogenetic analysis of covariance to scrutinize the phylogenetic relations of the red nucleus volume. Results: We created openly available high-resolution cytoarchitectonic delineations of the human red nucleus in the microscopic BigBrain model and human probabilistic maps that capture inter-subject variations in quantitative terms. Further, we compared the volume of the nucleus across primates and showed that the parvocellular subdivision scaled proportionally to the brain volume across the groups while the magnocellular part deviated significantly from the scaling in humans and non-human apes. These two groups showed the lowest size of the magnocellular red nucleus relative to the whole brain volume and the largest relative difference between the parvocellular and magnocellular subdivision. Discussion: That is, the red nucleus has transformed from a magnocellular-dominated to a parvocellular-dominated station. It is reasonable to assume that these changes are intertwined with evolutionary developments in other brain regions, in particular the motor system. We speculate that the interspecies variations might partly reflect the differences in hand dexterity but also the tentative involvement of the red nucleus in sensory and cognitive functions.

10.
Front Hum Neurosci ; 17: 1087026, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448625

RESUMEN

The human frontal operculum (FOp) is a brain region that covers parts of the ventral frontal cortex next to the insula. Functional imaging studies showed activations in this region in tasks related to language, somatosensory, and cognitive functions. While the precise cytoarchitectonic areas that correlate to these processes have not yet been revealed, earlier receptorarchitectonic analysis resulted in a detailed parcellation of the FOp. We complemented this analysis by a cytoarchitectonic study of a sample of ten postmortem brains and mapped the posterior FOp in serial, cell-body stained histological sections using image analysis and multivariate statistics. Three new areas were identified: Op5 represents the most posterior area, followed by Op6 and the most anterior region Op7. Areas Op5-Op7 approach the insula, up to the circular sulcus. Area 44 of Broca's region, the most ventral part of premotor area 6, and parts of the parietal operculum are dorso-laterally adjacent to Op5-Op7. The areas did not show any interhemispheric or sex differences. Three-dimensional probability maps and a maximum probability map were generated in stereotaxic space, and then used, in a first proof-of-concept-study, for functional decoding and analysis of structural and functional connectivity. Functional decoding revealed different profiles of cytoarchitectonically identified Op5-Op7. While left Op6 was active in music cognition, right Op5 was involved in chewing/swallowing and sexual processing. Both areas showed activation during the exercise of isometric force in muscles. An involvement in the coordination of flexion/extension could be shown for the right Op6. Meta-analytic connectivity modeling revealed various functional connections of the FOp areas within motor and somatosensory networks, with the most evident connection with the music/language network for Op6 left. The new cytoarchitectonic maps are part of Julich-Brain, and publicly available to serve as a basis for future analyses of structural-functional relationships in this region.

11.
Brain Struct Funct ; 227(4): 1439-1455, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34989871

RESUMEN

Brain areas at the parahippocampal gyrus of the temporal-occipital transition region are involved in different functions including processing visual-spatial information and episodic memory. Results of neuroimaging experiments have revealed a differentiated functional parcellation of this region, but its microstructural correlates are less well understood. Here we provide probability maps of four new cytoarchitectonic areas, Ph1, Ph2, Ph3 and CoS1 at the parahippocampal gyrus and collateral sulcus. Areas have been identified based on an observer-independent mapping of serial, cell-body stained histological sections of ten human postmortem brains. They have been registered to two standard reference spaces, and superimposed to capture intersubject variability. The comparison of the maps with functional imaging data illustrates the different involvement of the new areas in a variety of functions. Maps are available as part of Julich-Brain atlas and can be used as anatomical references for future studies to better understand relationships between structure and function of the caudal parahippocampal cortex.


Asunto(s)
Lóbulo Occipital , Lóbulo Temporal , Mapeo Encefálico/métodos , Humanos , Neuroimagen , Neuronas , Giro Parahipocampal
12.
Front Neuroanat ; 16: 915877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032993

RESUMEN

The dorsolateral prefrontal cortex (DLPFC) plays a key role in cognitive control and executive functions, including working memory, attention, value encoding, decision making, monitoring, and controlling behavioral strategies. However, the relationships between this variety of functions and the underlying cortical areas, which specifically contribute to these functions, are not yet well-understood. Existing microstructural maps differ in the number, localization, and extent of areas of the DLPFC. Moreover, there is a considerable intersubject variability both in the sulcal pattern and in the microstructure of this region, which impedes comparison with functional neuroimaging studies. The aim of this study was to provide microstructural, cytoarchitectonic maps of the human anterior DLPFC in 3D space. Therefore, we analyzed 10 human post-mortem brains and mapped their borders using a well-established approach based on statistical image analysis. Four new areas (i.e., SFS1, SFS2, MFG1, and MFG2) were identified in serial, cell-body stained brain sections that occupy the anterior superior frontal sulcus and middle frontal gyrus, i.e., a region corresponding to parts of Brodmann areas 9 and 46. Differences between areas in cytoarchitecture were captured using gray level index profiles, reflecting changes in the volume fraction of cell bodies from the surface of the brain to the cortex-white matter border. A hierarchical cluster analysis of these profiles indicated that areas of the anterior DLPFC displayed higher cytoarchitectonic similarity between each other than to areas of the neighboring frontal pole (areas Fp1 and Fp2), Broca's region (areas 44 and 45) of the ventral prefrontal cortex, and posterior DLPFC areas (8d1, 8d2, 8v1, and 8v2). Area-specific, cytoarchitectonic differences were found between the brains of males and females. The individual areas were 3D-reconstructed, and probability maps were created in the MNI Colin27 and ICBM152casym reference spaces to take the variability of areas in stereotaxic space into account. The new maps contribute to Julich-Brain and are publicly available as a resource for studying neuroimaging data, helping to clarify the functional and organizational principles of the human prefrontal cortex.

13.
Cortex ; 153: 235-256, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35568575

RESUMEN

The inferior frontal sulcus is conceptualized as the landmark delineating ventro-from dorsolateral prefrontal cortex. Functional imaging studies report activations within the sulcus during tasks addressing cognitive control and verbal working memory, while their microstructural correlates are not well defined. Existing microstructural maps, e.g., Brodmann's map, do not distinguish separate areas within the sulcus. We identified six new areas in the inferior frontal sulcus and its junction to the precentral sulcus, ifs1-4, ifj1-ifj2, by combined cytoarchitectonic analysis and receptor autoradiography. A hierarchical cluster analysis of receptor densities of these and neighbouring prefrontal areas revealed that they form a distinct cluster within the prefrontal cortex. Major interhemispheric differences were found in both cyto- and receptorarchitecture. The function of cytoarchitectonically identified areas was explored by comparing probabilistic maps of the areas in stereotaxic space with their functions and co-activation patterns as analysed by means of a coordinate-based meta-analysis. We found a bilateral involvement in working memory, as well as a lateralization of different language-related processes to the left hemisphere, and of music processing and attention to the right-hemispheric areas. Particularly ifj2 might act as a functional hub between the networks. The cytoarchitectonic maps and receptor densities provide a powerful tool to further elucidate the function of these areas. The maps are available through the Human Brain Atlas of the Human Brain Project and serve in combination with the information on the cyto- and receptor architecture of the areas as a resource for brain models and simulations.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/fisiología , Mapeo Encefálico/métodos , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Memoria a Corto Plazo , Corteza Prefrontal/diagnóstico por imagen
14.
Front Neuroanat ; 16: 837485, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350721

RESUMEN

The human metathalamus plays an important role in processing visual and auditory information. Understanding its layers and subdivisions is important to gain insights in its function as a subcortical relay station and involvement in various pathologies. Yet, detailed histological references of the microanatomy in 3D space are still missing. We therefore aim at providing cytoarchitectonic maps of the medial geniculate body (MGB) and its subdivisions in the BigBrain - a high-resolution 3D-reconstructed histological model of the human brain, as well as probabilistic cytoarchitectonic maps of the MGB and lateral geniculate body (LGB). Therefore, histological sections of ten postmortem brains were studied. Three MGB subdivisions (MGBv, MGBd, MGBm) were identified on every 5th BigBrain section, and a deep-learning based tool was applied to map them on every remaining section. The maps were 3D-reconstructed to show the shape and extent of the MGB and its subdivisions with cellular precision. The LGB and MGB were additionally identified in nine other postmortem brains. Probabilistic cytoarchitectonic maps in the MNI "Colin27" and MNI ICBM152 reference spaces were computed which reveal an overall low interindividual variability in topography and extent. The probabilistic maps were included into the Julich-Brain atlas, and are freely available. They can be linked to other 3D data of human brain organization and serve as an anatomical reference for diagnostic, prognostic and therapeutic neuroimaging studies of healthy brains and patients. Furthermore, the high-resolution MGB BigBrain maps provide a basis for data integration, brain modeling and simulation to bridge the larger scale involvement of thalamocortical and local subcortical circuits.

15.
J Hum Evol ; 58(4): 281-92, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20172590

RESUMEN

It has been argued that changes in the relative sizes of visual system structures predated an increase in brain size and provide evidence of brain reorganization in hominins. However, data about the volume and anatomical limits of visual brain structures in the extant taxa phylogenetically closest to humans-the apes-remain scarce, thus complicating tests of hypotheses about evolutionary changes. Here, we analyze new volumetric data for the primary visual cortex and the lateral geniculate nucleus to determine whether or not the human brain departs from allometrically-expected patterns of brain organization. Primary visual cortex volumes were compared to lunate sulcus position in apes to investigate whether or not inferences about brain reorganization made from fossil hominin endocasts are reliable in this context. In contrast to previous studies, in which all species were relatively poorly sampled, the current study attempted to evaluate the degree of intraspecific variability by including numerous hominoid individuals (particularly Pan troglodytes and Homo sapiens). In addition, we present and compare volumetric data from three new hominoid species-Pan paniscus, Pongo pygmaeus, and Symphalangus syndactylus. These new data demonstrate that hominoid visual brain structure volumes vary more than previously appreciated. In addition, humans have relatively reduced primary visual cortex and lateral geniculate nucleus volumes as compared to allometric predictions from other hominoids. These results suggest that inferences about the position of the lunate sulcus on fossil endocasts may provide information about brain organization.


Asunto(s)
Hominidae/anatomía & histología , Hylobates/anatomía & histología , Macaca fascicularis/anatomía & histología , Pan paniscus/anatomía & histología , Pan troglodytes/anatomía & histología , Pongo pygmaeus/anatomía & histología , Corteza Visual/anatomía & histología , Animales , Evolución Biológica , Fósiles , Cuerpos Geniculados/anatomía & histología , Humanos , Imagen por Resonancia Magnética , Tamaño de los Órganos
16.
Science ; 369(6506): 988-992, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32732281

RESUMEN

Cytoarchitecture is a basic principle of microstructural brain parcellation. We introduce Julich-Brain, a three-dimensional atlas containing cytoarchitectonic maps of cortical areas and subcortical nuclei. The atlas is probabilistic, which enables it to account for variations between individual brains. Building such an atlas was highly data- and labor-intensive and required the development of nested, interdependent workflows for detecting borders between brain areas, data processing, provenance tracking, and flexible execution of processing chains to handle large amounts of data at different spatial scales. Full cortical coverage was achieved by the inclusion of gap maps to complement cortical maps. The atlas is dynamic and will be adapted as mapping progresses; it is openly available to support neuroimaging studies as well as modeling and simulation; and it is interoperable, enabling connection to other atlases and resources.


Asunto(s)
Atlas como Asunto , Corteza Cerebral/ultraestructura , Conjuntos de Datos como Asunto , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Modelos Estadísticos
17.
Cortex ; 128: 1-21, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32298845

RESUMEN

The architectonical organization of putatively higher auditory areas in the human superior temporal gyrus and sulcus is not yet well understood. To provide a coherent map of this part of the brain, which is involved in language and other functions, we examined the cytoarchitecture and cortical parcellation of this region in histological sections of ten human postmortem brains using an observer-independent mapping approach. Two new areas were identified in the temporo-insular region (areas TeI, TI). TeI is medially adjacent to the primary auditory cortex (area Te1). TI is located between TeI and the insular cortex. Laterally adjacent to previously mapped areas Te2 and Te3, two new areas (STS1, STS2) were identified in the superior temporal sulcus. All four areas were mapped over their whole extent in serial, cell-body stained sections, and their cytoarchitecture was analyzed using quantitative image analysis and multivariate statistics. Interestingly, area TeI, which is located between area Te1 and area TI at the transition to the insula, was more similar in cytoarchitecture to lateral area Te2.1 than to the directly adjacent areas TI and Te1. Such structural similarity of areas medially and laterally to Te1 would be in line with the core-belt-parabelt concept in macaques. The cytoarchitectonic probabilistic maps of all areas show the localization of the areas and their interindividual variability. The new maps are publicly available and provide a basis to further explore structural-functional relationship of the language network in the temporal cortex.


Asunto(s)
Corteza Auditiva , Mapeo Encefálico , Humanos , Neuronas , Lóbulo Temporal
18.
Brain Struct Funct ; 225(3): 881-907, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31955294

RESUMEN

The human hippocampal formation is relevant for various aspects of memory and learning, and the different hippocampal regions are differentially affected by neuropsychiatric disorders. Therefore, the hippocampal formation has been subject of numerous cytoarchitectonic and other mapping studies, which resulted in divergent parcellation schemes. To understand the principles of hippocampal architecture, it is necessary to integrate different levels of hippocampal organisation, going beyond one modality. We here applied a multimodal mapping approach combining cyto- and multi-receptorarchitectonic analyses, and generated probabilistic maps in stereotaxic space of the identified regions. Cytoarchitecture in combination with the regional and laminar distribution of 15 neurotransmitter receptors visualized by in vitro receptor autoradiography were analysed in seven hemispheres from 6 unfixed shock frozen and serially sectioned brains. Cytoarchitectonic delineations for generation of probabilistic maps were carried out on histological sections from ten fixed, paraffin embedded and serially sectioned brains. Nine cyto- and receptorarchitectonically distinct regions were identified within the hippocampal formation (i.e., fascia dentata, cornu Ammonis (CA) regions 1-4, prosubiculum, subiculum proper, presubiculum and parasubiculum), as well as the hippocampal-amygdaloid transition area and the periallocortical transsubiculum. Subsequently generated probabilistic maps quantify intersubject variability in the size and extent of these cyto- and receptorarchitectonically distinct regions. The regions did not differ in their volume between the hemispheres and gender. Receptor mapping revealed additional subdivisions which could not be detected by cytoarchitectonic analysis alone. They correspond to parcellations previously found in immunohistochemical and connectivity studies. The multimodal approach enabled the definition of regions not consistently reported, e.g., CA4 region or prosubiculum. The ensuing detailed probabilistic maps of the hippocampal formation constitute the basis for future architectonically informed analyses of in vivo neuroimaging studies.


Asunto(s)
Hipocampo/citología , Hipocampo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores de Neurotransmisores/metabolismo , Anciano , Autorradiografía , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos
19.
Elife ; 92020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32755545

RESUMEN

The human superior temporal plane, the site of the auditory cortex, displays high inter-individual macro-anatomical variation. This questions the validity of curvature-based alignment (CBA) methods for in vivo imaging data. Here, we have addressed this issue by developing CBA+, which is a cortical surface registration method that uses prior macro-anatomical knowledge. We validate this method by using cytoarchitectonic areas on 10 individual brains (which we make publicly available). Compared to volumetric and standard surface registration, CBA+ results in a more accurate cytoarchitectonic auditory atlas. The improved correspondence of micro-anatomy following the improved alignment of macro-anatomy validates the superiority of CBA+ compared to CBA. In addition, we use CBA+ to align in vivo and postmortem data. This allows projection of functional and anatomical information collected in vivo onto the cytoarchitectonic areas, which has the potential to contribute to the ongoing debate on the parcellation of the human auditory cortex.


Asunto(s)
Corteza Auditiva/citología , Mapeo Encefálico/métodos , Humanos
20.
Front Neuroanat ; 14: 2, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116573

RESUMEN

A comprehensive concept of the biological basis of reward, social and emotional behavior, and language requires a deeper understanding of the microstructure and connectivity of the underlying brain regions. Such understanding could provide deeper insights into their role in functional networks, and form the anatomical basis of the functional segregation of this region as shown in recent in vivo imaging studies. Here, we investigated the cytoarchitecture of the lateral orbitofrontal cortex (lateral OFC) in serial histological sections of 10 human postmortem brains by image analysis and a statistically reproducible approach to detect borders between cortical areas. Profiles of the volume fraction of cell bodies were therefore extracted from digitized histological images, describing laminar changes from the layer I/layer II boundary to the white matter. As a result, four new areas, Fo4-7, were identified. Area Fo4 was mainly found in the anterior orbital gyrus (AOG), Fo5 anteriorly in the inferior frontal gyrus (IFG), Fo6 in the lateral orbital gyrus (LOG), and Fo7 in the lateral orbital sulcus. Areas differed in cortical thickness, abundance and size of pyramidal cells in layer III and degree of granularity in layer IV. A hierarchical cluster analysis was used to quantify cytoarchitectonic differences between them. The 3D-reconstructed areas were transformed into the single-subject template of the Montreal Neurological Institute (MNI), where probabilistic maps and a maximum probability map (MPM) were calculated as part of the JuBrain Cytoarchitectonic Atlas. These maps served as reference data to study the functional properties of the areas using the BrainMap database. The type of behavioral tasks that activated them was analyzed to get first insights of co-activation patterns of the lateral OFC and its contribution to cognitive networks. Meta-analytic connectivity modeling (MACM) showed that functional decoding revealed activation in gustatory perception in Fo4; reward and somesthetic perception in Fo5; semantic processing and pain perception in Fo6; and emotional processing and covert reading in Fo7. Together with existing maps of the JuBrain Cytoarchitectonic Atlas, the new maps can now be used as an open-source reference for neuroimaging studies, allowing to further decode brain function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA