Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem J ; 479(13): 1467-1486, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35730579

RESUMEN

The protein kinase PKN2 is required for embryonic development and PKN2 knockout mice die as a result of failure in the expansion of mesoderm, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The specific role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established. We used mice with cardiomyocyte-directed knockout of PKN2 or global PKN2 haploinsufficiency to assess cardiac development and function using high resolution episcopic microscopy, MRI, micro-CT and echocardiography. Biochemical and histological changes were also assessed. Cardiomyocyte-directed PKN2 knockout embryos displayed striking abnormalities in the compact myocardium, with frequent myocardial clefts and diverticula, ventricular septal defects and abnormal heart shape. The sub-Mendelian homozygous knockout survivors developed cardiac failure. RNASeq data showed up-regulation of PKN2 in patients with dilated cardiomyopathy, suggesting an involvement in adult heart disease. Given the rarity of homozygous survivors with cardiomyocyte-specific deletion of PKN2, the requirement for PKN2 in adult mice was explored using the constitutive heterozygous PKN2 knockout. Cardiac hypertrophy resulting from hypertension induced by angiotensin II was reduced in these haploinsufficient PKN2 mice relative to wild-type littermates, with suppression of cardiomyocyte hypertrophy and cardiac fibrosis. It is concluded that cardiomyocyte PKN2 is essential for heart development and the formation of compact myocardium and is also required for cardiac hypertrophy in hypertension. Thus, PKN signalling may offer therapeutic options for managing congenital and adult heart diseases.


Asunto(s)
Cardiomiopatías , Hipertensión , Proteína Quinasa C/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Cardiomegalia/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Femenino , Hipertensión/metabolismo , Hipertensión/patología , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Embarazo
2.
Cardiovasc Res ; 119(11): 2074-2088, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37067297

RESUMEN

AIMS: Nuclear envelope integrity is essential for the compartmentalization of the nucleus and cytoplasm. Importantly, mutations in genes encoding nuclear envelope (NE) and associated proteins are the second highest cause of familial dilated cardiomyopathy. One such NE protein that causes cardiomyopathy in humans and affects mouse heart development is Lem2. However, its role in the heart remains poorly understood. METHODS AND RESULTS: We generated mice in which Lem2 was specifically ablated either in embryonic cardiomyocytes (Lem2 cKO) or in adult cardiomyocytes (Lem2 iCKO) and carried out detailed physiological, tissue, and cellular analyses. High-resolution episcopic microscopy was used for three-dimensional reconstructions and detailed morphological analyses. RNA-sequencing and immunofluorescence identified altered pathways and cellular phenotypes, and cardiomyocytes were isolated to interrogate nuclear integrity in more detail. In addition, echocardiography provided a physiological assessment of Lem2 iCKO adult mice. We found that Lem2 was essential for cardiac development, and hearts from Lem2 cKO mice were morphologically and transcriptionally underdeveloped. Lem2 cKO hearts displayed high levels of DNA damage, nuclear rupture, and apoptosis. Crucially, we found that these defects were driven by muscle contraction as they were ameliorated by inhibiting myosin contraction and L-type calcium channels. Conversely, reducing Lem2 levels to ∼45% in adult cardiomyocytes did not lead to overt cardiac dysfunction up to 18 months of age. CONCLUSIONS: Our data suggest that Lem2 is critical for integrity at the nascent NE in foetal hearts, and protects the nucleus from the mechanical forces of muscle contraction. In contrast, the adult heart is not detectably affected by partial Lem2 depletion, perhaps owing to a more established NE and increased adaptation to mechanical stress. Taken together, these data provide insights into mechanisms underlying cardiomyopathy in patients with mutations in Lem2 and cardio-laminopathies in general.


Asunto(s)
Membrana Nuclear , Proteínas Nucleares , Animales , Humanos , Ratones , Daño del ADN , Corazón , Mutación , Miocitos Cardíacos/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética
3.
Biomedicines ; 9(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34829939

RESUMEN

High resolution episcopic microscopy (HREM) produces digital volume data by physically sectioning histologically processed specimens, while capturing images of the subsequently exposed block faces. Our study aims to systematically define the spectrum of typical artefacts inherent to HREM data and to research their effect on the interpretation of the phenotype of wildtype and mutant mouse embryos. A total of 607 (198 wildtypes, 409 mutants) HREM data sets of mouse embryos harvested at embryonic day (E) 14.5 were systematically and comprehensively examined. The specimens had been processed according to essentially identical protocols. Each data set comprised 2000 to 4000 single digital images. Voxel dimensions were 3 × 3 × 3 µm3. Using 3D volume models and virtual resections, we identified a number of characteristic artefacts and grouped them according to their most likely causality. Furthermore, we highlight those that affect the interpretation of embryo data and provide examples for artefacts mimicking tissue defects and structural pathologies. Our results aid in optimizing specimen preparation and data generation, are vital for the correct interpretation of HREM data and allow distinguishing tissue defects and pathologies from harmless artificial alterations. In particular, they enable correct diagnosis of pathologies in mouse embryos serving as models for deciphering the mechanisms of developmental disorders.

4.
Cell Stem Cell ; 27(5): 765-783.e14, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32991838

RESUMEN

Non-coding mutations at the far end of a large gene desert surrounding the SOX9 gene result in a human craniofacial disorder called Pierre Robin sequence (PRS). Leveraging a human stem cell differentiation model, we identify two clusters of enhancers within the PRS-associated region that regulate SOX9 expression during a restricted window of facial progenitor development at distances up to 1.45 Mb. Enhancers within the 1.45 Mb cluster exhibit highly synergistic activity that is dependent on the Coordinator motif. Using mouse models, we demonstrate that PRS phenotypic specificity arises from the convergence of two mechanisms: confinement of Sox9 dosage perturbation to developing facial structures through context-specific enhancer activity and heightened sensitivity of the lower jaw to Sox9 expression reduction. Overall, we characterize the longest-range human enhancers involved in congenital malformations, directly demonstrate that PRS is an enhanceropathy, and illustrate how small changes in gene expression can lead to morphological variation.


Asunto(s)
Cresta Neural , Síndrome de Pierre Robin , Diferenciación Celular , Humanos , Mutación/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factor de Transcripción SOX9/genética
5.
Cardiovasc Res ; 104(3): 432-42, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25344367

RESUMEN

AIMS: Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which fibroblast growth factor 10 (FGF10) controls foetal cardiomyocyte proliferation and to test the hypothesis that FGF10 promotes the proliferative capacity of adult cardiomyocytes. METHODS AND RESULTS: Analysis of Fgf10(-/-) hearts and primary cardiomyocyte cultures reveals that altered ventricular morphology is associated with impaired proliferation of right but not left-ventricular myocytes. Decreased FOXO3 phosphorylation associated with up-regulated p27(kip) (1) levels was observed specifically in the right ventricle of Fgf10(-/-) hearts. In addition, cell-type-specific expression analysis revealed that Fgf10 and its receptor, Fgfr2b, are expressed in cardiomyocytes and not cardiac fibroblasts, consistent with a cell-type autonomous role of FGF10 in regulating regional specific myocyte proliferation in the foetal heart. Furthermore, we demonstrate that in vivo overexpression of Fgf10 in adult mice promotes cardiomyocyte but not cardiac fibroblast cell-cycle re-entry. CONCLUSION: FGF10 regulates regional cardiomyocyte proliferation in the foetal heart through a FOXO3/p27(kip1) pathway. In addition, FGF10 triggers cell-cycle re-entry of adult cardiomyocytes and is thus a potential target for cardiac repair.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/fisiología , Corazón/embriología , Miocitos Cardíacos/fisiología , Animales , Ciclo Celular , Proliferación Celular , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Ratones
6.
PLoS One ; 6(9): e24812, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931855

RESUMEN

Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51) of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R) does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a "shifting" site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Miocardio/metabolismo , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Células COS , Línea Celular , Chlorocebus aethiops , Ensayo de Cambio de Movilidad Electroforética , Técnica del Anticuerpo Fluorescente , Proteína Homeótica Nkx-2.5 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Ratones , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo
7.
Genesis ; 45(3): 135-44, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17334998

RESUMEN

Mouse-lines expressing Cre recombinase in a tissue-specific manner are a powerful tool in developmental biology. Here, we report that a 3 kb fragment of the Xenopus laevis myosin light-chain 2 (XMLC2) promoter drives Cre recombinase expression in a cardiac-restricted fashion in the mouse embryo. We have isolated two XMLC2-Cre lines that express recombinase exclusively within cardiomyocytes, from the onset of their differentiation in the cardiac crescent of the early embryo. Expression is maintained throughout the myocardium of the embryonic heart tube and subsequently the mature myocardium of the chambered heart. Recombinase activity is detected in all myocardial tissue, including the pulmonary veins. One XMLC2-Cre line shows uniform expression while the other only expresses recombinase in a mosaic fashion encompassing less than 50% of the myocardial cells. Both lines cause severe cardiac malformations when crossed to a conditional Tbx5 line, resulting in embryonic death at midgestation. Optical projection tomography reveals that the spectrum of developmental abnormalities includes a shortening of the outflow tract and its abnormal alignment, along with a dramatic reduction in trabeculation of the ventricular segment of the looping heart tube.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Integrasas/metabolismo , Miocardio/enzimología , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiopatías Congénitas/inducido químicamente , Integrasas/genética , Ratones , Ratones Transgénicos , Miocardio/patología , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
8.
Birth Defects Res C Embryo Today ; 72(3): 213-23, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15495188

RESUMEN

One of the overarching goals in developmental biology is the elucidation of mechanisms that elaborate form and function. To this end, an accurate morphological description of embryonic development is essential. However, visualizing dynamic changes in the three-dimensional (3D) structure of the developing embryo has been a "holy grail" in the field of developmental biology. The fundamental difficulties that have hindered all efforts in 3D reconstruction using two-dimensional (2D) image stacks revolve around the seemingly intractable problems of section registration and distortion. A remarkably simple solution has come about with the development of a new technique referred to as episcopic fluorescence image capture (EFIC). With EFIC imaging, tissue autofluorescence is used to image the block face prior to cutting each section. The 2D resolution obtained is close to that achieved by histology, and such 2D image stacks can be readily reconstructed in 3D. The 3D models generated provide fine structural details with resolution unmatched by 3D reconstructions obtained with any other imaging modalities. Given the perfect registration of EFIC image stacks, another important capability provided by EFIC is digital resectioning in any plane. This provides complete flexibility in the selection of optimal virtual sectioning planes for viewing different features in a specimen, and is invaluable for analyzing dynamic changes in tissue structure in the developing embryo. The capabilities provided by EFIC for rapid high resolution 3D reconstruction together with digital resectioning make this an unparalleled tool for characterizing morphogenetic events in the developing embryo. Although our review is focused on using EFIC for studying embryonic development, it is important to note that there is no intrinsic limitation on the size of the specimen that can be analyzed by EFIC imaging. Overall, EFIC should serve as an important imaging technique that will complement other 3D imaging modalities such as MRI and optical tomography. Given the feasibility of generating EFIC image stacks using cryoembedded or polyethylene glycol (PEG)-embedded specimens, there is the possibility that EFIC may be combined with 3D RNA or protein expression profiling. Together, such studies may help further elucidate the relationship between form and function.


Asunto(s)
Embrión de Mamíferos/anatomía & histología , Fluorometría/métodos , Imagenología Tridimensional/métodos , Fotomicrografía/métodos , Animales , Animales Recién Nacidos , Fluorometría/instrumentación , Ratones , Fotomicrografía/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA