Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; 42(7): 2044-2056, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37021996

RESUMEN

Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data. In this work, we show that these attacks presented in the literature are impractical in FL use-cases where the clients' training involves updating the Batch Normalization (BN) statistics and provide a new baseline attack that works for such scenarios. Furthermore, we present new ways to measure and visualize potential data leakage in FL. Our work is a step towards establishing reproducible methods of measuring data leakage in FL and could help determine the optimal tradeoffs between privacy-preserving techniques, such as differential privacy, and model accuracy based on quantifiable metrics.


Asunto(s)
Redes Neurales de la Computación , Aprendizaje Automático Supervisado , Humanos , Privacidad , Informática Médica
2.
Med Image Anal ; 82: 102624, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36208571

RESUMEN

An important challenge and limiting factor in deep learning methods for medical imaging segmentation is the lack of available of annotated data to properly train models. For the specific task of tumor segmentation, the process entails clinicians labeling every slice of volumetric scans for every patient, which becomes prohibitive at the scale of datasets required to train neural networks to optimal performance. To address this, we propose a novel semi-supervised framework that allows training any segmentation (encoder-decoder) model using only information readily available in radiological data, namely the presence of a tumor in the image, in addition to a few annotated images. Specifically, we conjecture that a generative model performing domain translation on this weak label - healthy vs diseased scans - helps achieve tumor segmentation. The proposed GenSeg method first disentangles tumoral tissue from healthy "background" tissue. The latent representation is separated into (1) the common background information across both domains, and (2) the unique tumoral information. GenSeg then achieves diseased-to-healthy image translation by decoding a healthy version of the image from just the common representation, as well as a residual image that allows adding back the tumors. The same decoder that produces this residual tumor image, also outputs a tumor segmentation. Implicit data augmentation is achieved by re-using the same framework for healthy-to-diseased image translation, where a residual tumor image is produced from a prior distribution. By performing both image translation and segmentation simultaneously, GenSeg allows training on only partially annotated datasets. To test the framework, we trained U-Net-like architectures using GenSeg and evaluated their performance on 3 variants of a synthetic task, as well as on 2 benchmark datasets: brain tumor segmentation in MRI (derived from BraTS) and liver metastasis segmentation in CT (derived from LiTS). Our method outperforms the baseline semi-supervised (autoencoder and mean teacher) and supervised segmentation methods, with improvements ranging between 8-14% Dice score on the brain task and 5-8% on the liver task, when only 1% of the training images were annotated. These results show the proposed framework is ideal at addressing the problem of training deep segmentation models when a large portion of the available data is unlabeled and unpaired, a common issue in tumor segmentation.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasia Residual , Redes Neurales de la Computación , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA