Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 51(4): 1085-1096, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37982850

RESUMEN

Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Glicina/análogos & derivados , Piridinas , Humanos , Ratones , Ratas , Animales , Isocitrato Deshidrogenasa/genética , Glioma/genética , Tomografía de Emisión de Positrones/métodos , Neoplasias Encefálicas/genética
2.
J Labelled Comp Radiopharm ; 65(6): 162-166, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35288969

RESUMEN

[18 F]FLUDA is a selective radiotracer for in vivo imaging of the adenosine A2A receptor (A2A R) by positron emission tomography (PET). Promising preclinical results obtained by neuroimaging of mice and piglets suggest the translation of [18 F]FLUDA to human PET studies. Thus, we report herein a remotely controlled automated radiosynthesis of [18 F]FLUDA using a GE TRACERlab FX2 N radiosynthesizer. The radiotracer was obtained by a one-pot two-step radiofluorination procedure with a radiochemical yield of 9±1%, a radiochemical purity of ≥99%, and molar activities in the range of 69-333 GBq/µmol at the end of synthesis within a total synthesis time of approx. 95 min (n = 16). Altogether, we successfully established a reliable and reproducible procedure for the automated production of [18 F]FLUDA.


Asunto(s)
Adenosina , Receptor de Adenosina A2A , Animales , Radioisótopos de Flúor , Tomografía de Emisión de Positrones/métodos , Radioquímica/métodos , Radiofármacos , Porcinos
3.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35162950

RESUMEN

A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure.


Asunto(s)
Corazón/diagnóstico por imagen , Miocardio/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptor de Adenosina A2A/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Radioisótopos de Flúor/química , Corazón/fisiología , Humanos , Ratones , Ratones Transgénicos , Fenetilaminas/farmacología , Purinas/farmacología , Receptor de Adenosina A2A/metabolismo , Vidarabina/administración & dosificación , Vidarabina/análogos & derivados , Vidarabina/química
4.
Eur J Nucl Med Mol Imaging ; 48(9): 2727-2736, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33532910

RESUMEN

PURPOSE: The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. METHODS: [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. RESULTS: [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72-180 GBq/µmol. Autoradiography proved A2A receptor-specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 µg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. CONCLUSIONS: The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor de Adenosina A2A , Adenosina , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Flúor , Ratones , Radiofármacos , Ratas , Receptor de Adenosina A2A/metabolismo , Porcinos
5.
Bioorg Chem ; 114: 105191, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34375194

RESUMEN

The upregulation of the CB2 receptors in neuroinflammation and cancer and their potential visualization with PET (positron emission tomography) could provide a valuable diagnostic and therapy-monitoring tool in such disorders. However, the availability of reliable CB2-selective imaging probes is still lacking in clinical practice. We have recently identified a benzothiazole-2-ylidine amide hit (6a) as a highly potent CB2 ligand. With the aim of enhancing its CB2 over CB1 selectivity and introducing structural sites suitable for radiolabeling, we herein describe the development of fluorinated and methoxylated benzothiazole derivatives endowed with extremely high CB2 binding affinity and an exclusive selectivity to the CB2 receptor. Compounds 14, 15, 18, 19, 21, 24 and 25 displayed subnanomolar CB2Ki values (ranging from 0.16 nM to 0.68 nM) and interestingly, all of the synthesized compounds completely lacked affinity at the CB1 receptor (Ki > 10,000 nM for all compounds), indicating their remarkably high CB2 over CB1 selectivity factors. The fluorinated analogs, 15 and 21, were evaluated for their in vitro metabolic stability in mouse and human liver microsomes (MLM and HLM). Both 15 and 21 displayed an exceptionally high stability (98% and 91% intact compounds, respectively) after 60 min incubation with MLM. Contrastingly, a 5- and 2.8-fold lower stability was demonstrated for compounds 15 and 21, respectively, upon incubation with HLM for 60 min. Taken together, our data present extremely potent and selective CB2 ligands as credible leads that can be further exploited for 18F- or 11C-radiolabeling and utilization as PET tracers.


Asunto(s)
Benzotiazoles/farmacología , Desarrollo de Medicamentos , Receptor Cannabinoide CB2/metabolismo , Animales , Benzotiazoles/síntesis química , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Halogenación , Humanos , Ligandos , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Relación Estructura-Actividad
6.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360817

RESUMEN

Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.


Asunto(s)
Encéfalo/ultraestructura , Radioisótopos de Flúor/farmacocinética , Naftiridinas , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Receptor Cannabinoide CB2/química , Animales , Células Cultivadas , Femenino , Humanos , Ratones , Naftiridinas/síntesis química , Naftiridinas/química , Unión Proteica , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley
7.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33504051

RESUMEN

The adenosine A2A receptor (A2AR) has emerged as a potential non-dopaminergic target for the treatment of Parkinson's disease and, thus, the non-invasive imaging with positron emission tomography (PET) is of utmost importance to monitor the receptor expression and occupancy during an A2AR-tailored therapy. Aiming at the development of a PET radiotracer, we herein report the design of a series of novel fluorinated analogs (TOZ1-TOZ7) based on the structure of the A2AR antagonist tozadenant, and the preclinical evaluation of [18F]TOZ1. Autoradiography proved A2AR-specific in vitro binding of [18F]TOZ1 to striatum of mouse and pig brain. Investigations of the metabolic stability in mice revealed parent fractions of more than 76% and 92% of total activity in plasma and brain samples, respectively. Dynamic PET/magnetic resonance imaging (MRI) studies in mice revealed a brain uptake but no A2AR-specific in vivo binding.


Asunto(s)
Fluorodesoxiglucosa F18 , Imagen Molecular , Tomografía de Emisión de Positrones , Trazadores Radiactivos , Radiofármacos , Receptor de Adenosina A2A/metabolismo , Animales , Autorradiografía , Técnicas de Química Sintética , Fluorodesoxiglucosa F18/química , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Imagen Molecular/métodos , Estructura Molecular , Tomografía de Emisión de Positrones/métodos , Unión Proteica , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/metabolismo , Receptor de Adenosina A2A/química , Análisis Espectral , Relación Estructura-Actividad
8.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064122

RESUMEN

The σ2 receptor (transmembrane protein 97), which is involved in cholesterol homeostasis, is of high relevance for neoplastic processes. The upregulated expression of σ2 receptors in cancer cells and tissue in combination with the antiproliferative potency of σ2 receptor ligands motivates the research in the field of σ2 receptors for the diagnosis and therapy of different types of cancer. Starting from the well described 2-(4-(1H-indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline class of compounds, we synthesized a novel series of fluorinated derivatives bearing the F-atom at the aromatic indole/azaindole subunit. RM273 (2-[4-(6-fluoro-1H-pyrrolo[2,3-b]pyridin-1-yl)butyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline) was selected for labelling with 18F and evaluation regarding detection of σ2 receptors in the brain by positron emission tomography. Initial metabolism and biodistribution studies of [18F]RM273 in healthy mice revealed promising penetration of the radioligand into the brain. Preliminary in vitro autoradiography on brain cryosections of an orthotopic rat glioblastoma model proved the potential of the radioligand to detect the upregulation of σ2 receptors in glioblastoma cells compared to healthy brain tissue. The results indicate that the herein developed σ2 receptor ligand [18F]RM273 has potential to assess by non-invasive molecular imaging the correlation between the availability of σ2 receptors and properties of brain tumors such as tumor proliferation or resistance towards particular therapies.


Asunto(s)
Encéfalo/metabolismo , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Radiofármacos/química , Radiofármacos/metabolismo , Receptores sigma/metabolismo , Animales , Femenino , Humanos , Ligandos , Masculino , Ratones , Neoplasias/metabolismo , Ratas , Ratas Endogámicas F344 , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/metabolismo
9.
Int J Mol Sci ; 22(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562048

RESUMEN

The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0-60min after pre-treatment with α-CCA-Na in mice (-47%) and in piglets (-66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacología , Animales , Línea Celular Tumoral , Femenino , Radioisótopos de Flúor/química , Vesícula Biliar/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Ratas , Porcinos
10.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669003

RESUMEN

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


Asunto(s)
Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/química , Hidrocarburos Fluorados/química , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Receptor de Adenosina A2A/metabolismo , Adenosina/metabolismo , Antagonistas del Receptor de Adenosina A2/química , Animales , Autorradiografía , Encéfalo/metabolismo , Cromatografía Líquida de Alta Presión , Cricetinae , Hidrocarburos Fluorados/síntesis química , Imagen por Resonancia Magnética , Ratones , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
11.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366046

RESUMEN

The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging via positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized, containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM), along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolic studies of [18F]9 in mice revealed about 60% of radiotracer intact in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9, corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.


Asunto(s)
Adenosina/química , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Receptor de Adenosina A2B/metabolismo , Antagonistas del Receptor de Adenosina A2/química , Animales , Femenino , Humanos , Ratones , Estructura Molecular
12.
Molecules ; 25(9)2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32357571

RESUMEN

Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13-15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time-activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Neoplasias/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiometría/métodos , Radiofármacos/farmacología , Simportadores/antagonistas & inhibidores , Distribución Tisular/efectos de los fármacos , Animales , Médula Ósea/efectos de los fármacos , Radioisótopos de Flúor , Radiofármacos/síntesis química , Radiofármacos/química , Estómago/efectos de los fármacos , Porcinos , Tomografía Computarizada por Rayos X/métodos , Vejiga Urinaria/efectos de los fármacos
13.
Molecules ; 25(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252340

RESUMEN

The adenosine A2A receptor (A2AR) is regarded as a particularly appropriate target for non-dopaminergic treatment of Parkinson's disease (PD). An increased A2AR availability has been found in the human striatum at early stages of PD and in patients with PD and dyskinesias. The aim of this small animal positron emission tomography/magnetic resonance (PET/MR) imaging study was to investigate whether rotenone-treated mice reflect the aspect of striatal A2AR upregulation in PD. For that purpose, we selected the known A2AR-specific radiotracer [18F]FESCH and developed a simplified two-step one-pot radiosynthesis. PET images showed a high uptake of [18F]FESCH in the mouse striatum. Concomitantly, metabolism studies with [18F]FESCH revealed the presence of a brain-penetrant radiometabolite. In rotenone-treated mice, a slightly higher striatal A2AR binding of [18F]FESCH was found. Nonetheless, the correlation between the increased A2AR levels within the proposed PD animal model remains to be further investigated.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/administración & dosificación , Encéfalo/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Receptor de Adenosina A2A/metabolismo , Rotenona/efectos adversos , Antagonistas del Receptor de Adenosina A2/química , Animales , Encéfalo/diagnóstico por imagen , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Femenino , Radioisótopos de Flúor/química , Masculino , Ratones , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones
14.
Molecules ; 25(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423056

RESUMEN

Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Piridinas/síntesis química , Radiofármacos/síntesis química , Simportadores/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Ácidos Cumáricos/farmacología , Evaluación Preclínica de Medicamentos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Radioisótopos de Flúor , Ligandos , Ratones , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Piridinas/farmacocinética , Radiofármacos/farmacocinética , Ratas , Simportadores/antagonistas & inhibidores
16.
J Labelled Comp Radiopharm ; 62(8): 411-424, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31017677

RESUMEN

Monocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumor development and progression. Their expression levels are related to clinical disease prognosis. Accordingly, both MCTs are promising drug targets for treatment of a variety of human cancers. The noninvasive imaging of these MCTs in cancers is regarded to be advantageous for assessing MCT-mediated effects on chemotherapy and radiosensitization using specific MCT inhibitors. Herein, we describe a method for the radiosynthesis of [18 F]FACH ((E)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylic acid), as a novel radiolabeled MCT1/4 inhibitor for imaging with PET. A fluorinated analog of α-cyano-4-hydroxycinnamic acid (FACH) was synthesized, and the inhibition of MCT1 and MCT4 was measured via an L-[14 C]lactate uptake assay. Radiolabeling was performed by a two-step protocol comprising the radiosynthesis of the intermediate (E)/(Z)-[18 F]tert-Bu-FACH (tert-butyl (E)/(Z)-2-cyano-3-{4-[(3-[18 F]fluoropropyl)(propyl)amino]-2-methoxyphenyl}acrylate) followed by deprotection of the tert-butyl group. The radiofluorination was successfully implemented using either K[18 F]F-K2.2.2 -carbonate or [18 F]TBAF. The final deprotected product [18 F]FACH was only obtained when [18 F]tert-Bu-FACH was formed by the latter procedure. After optimization of the deprotection reaction, [18 F]FACH was obtained in high radiochemical yields (39.6 ± 8.3%, end of bombardment (EOB) and radiochemical purity (greater than 98%).


Asunto(s)
Acrilatos/síntesis química , Acrilatos/farmacología , Radioisótopos de Flúor/química , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Proteínas Musculares/antagonistas & inhibidores , Simportadores/antagonistas & inhibidores , Acrilatos/química , Animales , Línea Celular Tumoral , Técnicas de Química Sintética , Humanos , Marcaje Isotópico , Ratones , Radioquímica
17.
Int J Mol Sci ; 18(4)2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28379199

RESUMEN

The ghrelin receptor (GhrR) is a widely investigated target in several diseases. However, the current knowledge of its role and distribution in the brain is limited. Recently, the small and non-peptidic compound (S)-6-(4-bromo-2-fluorophenoxy)-3-((1-isopropylpiperidin-3-yl)methyl)-2-methylpyrido[3,2-d]pyrimidin-4(3H)-one ((S)-9) has been described as a GhrR ligand with high binding affinity. Here, we describe the synthesis of fluorinated derivatives, the in vitro evaluation of their potency as partial agonists and selectivity at GhrRs, and their physicochemical properties. These results identified compounds (S)-9, (R)-9, and (S)-16 as suitable parent molecules for 18F-labeled positron emission tomography (PET) radiotracers to enable future investigation of GhrR in the brain.


Asunto(s)
Proteínas Portadoras/metabolismo , Imagen Molecular/métodos , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Animales , Células CHO , Cricetulus , Halogenación , Humanos , Ligandos , Estructura Molecular , Tomografía de Emisión de Positrones/métodos , Unión Proteica , Pirimidinas/química , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/metabolismo
18.
Molecules ; 22(1)2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-28054997

RESUMEN

A small series of indol-3-yl-oxoacetamides was synthesized starting from the literature known N-(adamantan-1-yl)-2-(5-(furan-2-yl)-1-pentyl-1H-indol-3-yl)-2-oxoacetamide (5) by substituting the 1-pentyl-1H-indole subunit. Our preliminary biological evaluation showed that the fluorinated derivative 8 is a potent and selective CB2 ligand with Ki = 6.2 nM.


Asunto(s)
Acetamidas/síntesis química , Membrana Celular/efectos de los fármacos , Indoles/síntesis química , Receptor Cannabinoide CB2/agonistas , Acetamidas/farmacología , Animales , Células CHO , Membrana Celular/metabolismo , Medios de Contraste/síntesis química , Cricetulus , Expresión Génica , Halogenación , Humanos , Indoles/farmacología , Ligandos , Tomografía de Emisión de Positrones , Unión Proteica , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Transgenes
19.
Chemistry ; 22(1): 111-5, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26510486

RESUMEN

Reaction of pyrrole-2-carboxamides with Selectfluor in MeCN/water (4:1) affords 2-hydroxy-5-oxopyrrole-2-carboxamides in yields of up to 80 %. A variety of sensitive functional groups is tolerated, among them aldehydes and alkynes. The new method also works in the presence of allyl groups and appears to be superior to the use of singlet oxygen. Reaction of the monobrominated dihydropyrrolo[1,2-a]pyrazinone mukanadin C and its nonbrominated analogue afforded bicyclic hydroxypyrrolones. These compounds are interesting as they constitute a partial structure of the marine natural product oxocyclostylidol.


Asunto(s)
Compuestos de Diazonio/química , Hidrocarburos Bromados/química , Pirazinas/química , Pirazinas/síntesis química , Pirroles/química , Pirroles/síntesis química , Catálisis , Estructura Molecular , Estereoisomerismo
20.
J Med Chem ; 66(7): 5242-5260, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36944112

RESUMEN

The development of cannabinoid receptor type 2 (CB2R) radioligands for positron emission tomography (PET) imaging was intensively explored. To overcome the low metabolic stability and simultaneously increase the binding affinity of known CB2R radioligands, a carborane moiety was used as a bioisostere. Here we report the synthesis and characterization of carborane-based 1,8-naphthyridinones and thiazoles as novel CB2R ligands. All tested compounds showed low nanomolar CB2R affinity, with (Z)-N-[3-(4-fluorobutyl)-4,5-dimethylthiazole-2(3H)-ylidene]-(1,7-dicarba-closo-dodecaboranyl)-carboxamide (LUZ5) exhibiting the highest affinity (0.8 nM). Compound [18F]LUZ5-d8 was obtained with an automated radiosynthesizer in high radiochemical yield and purity. In vivo evaluation revealed the improved metabolic stability of [18F]LUZ5-d8 compared to that of [18F]JHU94620. PET experiments in rats revealed high uptake in spleen and low uptake in brain. Thus, the introduction of a carborane moiety is an appropriate tool for modifying literature-known CB2R ligands and gaining access to a new class of high-affinity CB2R ligands, while the in vivo pharmacology still needs to be addressed.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Ratas , Animales , Ligandos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Unión Proteica , Receptores de Cannabinoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA