Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 388(2): 128-141, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36516086

RESUMEN

BACKGROUND: The late-onset cerebellar ataxias (LOCAs) have largely resisted molecular diagnosis. METHODS: We sequenced the genomes of six persons with autosomal dominant LOCA who were members of three French Canadian families and identified a candidate pathogenic repeat expansion. We then tested for association between the repeat expansion and disease in two independent case-control series - one French Canadian (66 patients and 209 controls) and the other German (228 patients and 199 controls). We also genotyped the repeat in 20 Australian and 31 Indian index patients. We assayed gene and protein expression in two postmortem cerebellum specimens and two induced pluripotent stem-cell (iPSC)-derived motor-neuron cell lines. RESULTS: In the six French Canadian patients, we identified a GAA repeat expansion deep in the first intron of FGF14, which encodes fibroblast growth factor 14. Cosegregation of the repeat expansion with disease in the families supported a pathogenic threshold of at least 250 GAA repeats ([GAA]≥250). There was significant association between FGF14 (GAA)≥250 expansions and LOCA in the French Canadian series (odds ratio, 105.60; 95% confidence interval [CI], 31.09 to 334.20; P<0.001) and in the German series (odds ratio, 8.76; 95% CI, 3.45 to 20.84; P<0.001). The repeat expansion was present in 61%, 18%, 15%, and 10% of French Canadian, German, Australian, and Indian index patients, respectively. In total, we identified 128 patients with LOCA who carried an FGF14 (GAA)≥250 expansion. Postmortem cerebellum specimens and iPSC-derived motor neurons from patients showed reduced expression of FGF14 RNA and protein. CONCLUSIONS: A dominantly inherited deep intronic GAA repeat expansion in FGF14 was found to be associated with LOCA. (Funded by Fondation Groupe Monaco and others.).


Asunto(s)
Ataxia Cerebelosa , Expansión de las Repeticiones de ADN , Intrones , Humanos , Australia , Canadá , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Intrones/genética , Expansión de las Repeticiones de ADN/genética
2.
Brain ; 147(7): 2357-2367, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38227807

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease (MND) that shares a common clinical, genetic and pathologic spectrum with frontotemporal dementia (FTD). It is highly heterogeneous in its presentation and features. Up to 50% of patients with MND develop cognitive-behavioural symptoms during the course of the disease, meeting criteria for FTD in 10%-15% of cases. In the absence of a precise biomarker, neuropathology is still a valuable tool to understand disease nosology, reach a definite diagnostic confirmation and help define specific subgroups of patients with common phenotypic, genetic and biomarker profiles. However, few neuropathological series have been published, and the frequency of frontotemporal lobar degeneration (FTLD) in MND is difficult to estimate. In this work we describe a large clinicopathological series of MND patients, analysing the frequency of concurrent FTLD changes and trying to define specific subgroups of patients based on their clinical, genetic and pathological characteristics. We performed an observational, retrospective, multicentre case study. We included all cases meeting neuropathological criteria for MND from the Neurological Tissue Bank of the FRCB-IDIBAPS-Hospital Clínic Barcelona Biobank between 1994 and 2022, regardless of their last clinical diagnosis. While brain donation is encouraged in all patients, it is performed in very few, and representativeness of the cohort might not be precise for all patients with MND. We retrospectively reviewed clinical and neuropathological data and describe the main clinical, genetic and pathogenic features, comparing neuropathologic groups between MND with and without FTLD changes and aiming to define specific subgroups. We included brain samples from 124 patients, 44 of whom (35.5%) had FTLD neuropathologic features (i.e. FTLD-MND). Pathologic TDP-43 aggregates were present in 93.6% of the cohort and were more extensive (higher Brettschneider stage) in those with concurrent FTLD (P < 0.001). Motor symptom onset was more frequent in the bulbar region in FTLD-MND cases than in those with isolated MND (P = 0.023), with no differences in survival. We observed a better clinicopathological correlation in the MND group than in the FTLD-MND group (93.8% versus 61.4%; P < 0.001). Pathogenic genetic variants were more common in the FTLD-MND group, especially C9orf72. We describe a frequency of FTLD of 35.5% in our series of neuropathologically confirmed cases of MND. The FTLD-MND spectrum is highly heterogeneous in all aspects, especially in patients with FTLD, in whom it is particularly difficult to define specific subgroups. In the absence of definite biomarkers, neuropathology remains a valuable tool for a definite diagnosis, increasing our knowledge in disease nosology.


Asunto(s)
Degeneración Lobar Frontotemporal , Enfermedad de la Neurona Motora , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/genética , Estudios Retrospectivos , Enfermedad de la Neurona Motora/patología , Enfermedad de la Neurona Motora/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/genética , Encéfalo/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(48): e2211326119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409907

RESUMEN

In different organs and tissues, the lymphatic system serves as a drainage system for interstitial fluid and is useful for removing substances that would otherwise accumulate in the interstitium. In the brain, which lacks lymphatic circulation, the drainage and cleaning function is performed by the glymphatic system, called so for its dependence on glial cells and its similar function to that of the lymphatic system. In the present article, we define glymphatic insufficiency as the inability of the glymphatic system to properly perform the brain cleaning function. Furthermore, we propose that corpora amylacea or wasteosomes, which are protective structures that act as waste containers and accumulate waste products, are, in fact, a manifestation of chronic glymphatic insufficiency. Assuming this premise, we provide an explanation that coherently links the formation, distribution, structure, and function of these bodies in the human brain. Moreover, we open up new perspectives in the study of the glymphatic system since wasteosomes can provide information about which variables have the greatest impact on the glymphatic system and which diseases occur with chronic glymphatic insufficiency. For example, based on the presence of wasteosomes, it seems that aging, sleep disorders, and cerebrovascular pathologies have the highest impact on the glymphatic system, whereas neurodegenerative diseases have a more limited impact. Furthermore, as glymphatic insufficiency is a risk factor for neurodegenerative diseases, information provided by wasteosomes could help to define the strategies and actions that can prevent glymphatic disruptions, thus limiting the risk of developing neurodegenerative diseases.


Asunto(s)
Sistema Glinfático , Enfermedades Neurodegenerativas , Humanos , Encéfalo , Sistema Linfático , Envejecimiento
4.
Alzheimers Dement ; 20(3): 1515-1526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38018380

RESUMEN

INTRODUCTION: Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS: We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS: Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION: Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Galectina 3/genética , Galectina 3/metabolismo , Proteínas tau/líquido cefalorraquídeo , Encéfalo/patología , Biomarcadores/líquido cefalorraquídeo , Proteína C9orf72/genética , Mutación/genética
5.
Alzheimers Dement ; 20(3): 2262-2272, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38270275

RESUMEN

Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Humanos , Síndrome de Down/genética , Bancos de Muestras Biológicas , Enfermedad de Alzheimer/genética , Encéfalo , Europa (Continente)
6.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791483

RESUMEN

Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We performed a genome-wide DNA methylation analysis on sixty-four samples (from the prefrontal cortex and LCLs) including those taken from patients with early-onset forms of Alzheimer's disease (AD) and frontotemporal dementia (FTD) and healthy controls. A beta regression model and adjusted p-values were used to obtain differentially methylated positions (DMPs) via pairwise comparisons. A correlation analysis of DMP levels with Clariom D array gene expression data from the same cohort was also performed. The results showed hypermethylation as the most frequent finding in both tissues studied in the patient groups. Biological significance analysis revealed common pathways altered in AD and FTD patients, affecting neuron development, metabolism, signal transduction, and immune system pathways. These alterations were also found in LCL samples, suggesting the epigenetic changes might not be limited to the central nervous system. In the brain, CpG methylation presented an inverse correlation with gene expression, while in LCLs, we observed mainly a positive correlation. This study enhances our understanding of the biological pathways that are associated with neurodegeneration, describes differential methylation patterns, and suggests LCLs are a potential cell model for studying neurodegenerative diseases in earlier clinical phases than brain tissue.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Epigénesis Genética , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Femenino , Masculino , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/patología , Estudio de Asociación del Genoma Completo , Anciano , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Islas de CpG/genética , Línea Celular , Linfocitos/metabolismo
7.
Neuropathol Appl Neurobiol ; 49(1): e12879, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702749

RESUMEN

AIMS: Amyloid precursor protein (APP) 𝛽-C-terminal fragment (𝛽CTF) may have a neurotoxic role in Alzheimer's disease (AD). 𝛽CTF accumulates in the brains of patients with sporadic (SAD) and genetic forms of AD. Synapses degenerate early during the pathogenesis of AD. We studied whether the 𝛽CTF accumulates in synapses in SAD, autosomal dominant AD (ADAD) and Down syndrome (DS). METHODS: We used array tomography to determine APP at synapses in human AD tissue. We measured 𝛽CTF, A𝛽40, A𝛽42 and phosphorylated tau181 (p-tau181) concentrations in brain homogenates and synaptosomes of frontal and temporal cortex of SAD, ADAD, DS and controls. RESULTS: APP colocalised with pre- and post-synaptic markers in human AD brains. APP 𝛽CTF was enriched in AD synaptosomes. CONCLUSIONS: We demonstrate that 𝛽CTF accumulates in synapses in SAD, ADAD and DS. This finding might suggest a role for 𝛽CTF in synapse degeneration. Therapies aimed at mitigating 𝛽CTF accumulation could be potentially beneficial in AD.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Humanos , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Síndrome de Down/metabolismo , Encéfalo/patología , Sinapsis/patología , Péptidos beta-Amiloides/metabolismo
8.
J Neurosci Res ; 100(10): 1862-1875, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35766328

RESUMEN

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders. However, less is known about the role of oligodendrocytes (OLs). Here, we applied digital neuropathological methods to compare the expression pattern of glial cells in the frontal cortex (FrCx) of human post-mortem samples from patients with C9-FTLD and C9-FTLD/ALS, sporadic FTLD (sFTLD), and healthy controls (HCs). We also compared MBP levels in CSF from an independent clinical FTD cohort. We observed an increase in GFAP, and Iba1 immunoreactivity in C9 and sFTLD compared to controls in the gray matter (GM) of the FrCx. We observed a decrease in MBP immunoreactivity in the GM and white matter (WM) of the FrCx of C9, compared to HC and sFTLD. There was a negative correlation between MBP and pTDP-43 in C9 in the WM of the FrCx. We observed an increase in CSF MBP concentrations in C9 and sFTLD compared to HC. In conclusion, the C9 expansion is associated with myelin loss in the frontal cortex. This loss of MBP may be a result of oligodendroglial dysfunction due to the expansion or the presence of pTDP-43 in OLs. Understanding these biological processes will help to identify specific pathways associated with the C9orf72 expansion.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Vaina de Mielina , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Humanos , Vaina de Mielina/patología
9.
Neuropathol Appl Neurobiol ; 48(3): e12781, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34825396

RESUMEN

We report the neuropathological examination of a patient with Alzheimer's disease (AD) treated for 38 months with low doses of the BACE-1 inhibitor verubecestat. Brain examination showed small plaque size, reduced dystrophic neurites around plaques and reduced synaptic-associated Aß compared with a group of age-matched untreated sporadic AD (SAD) cases. Our findings suggest that BACE-1 inhibition has an impact on synaptic soluble Aß accumulation and neuritic derangement in AD.


Asunto(s)
Enfermedad de Alzheimer , Tiadiazinas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Óxidos S-Cíclicos/uso terapéutico , Humanos , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/patología , Tiadiazinas/uso terapéutico
10.
Acta Neuropathol ; 144(5): 843-859, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35895141

RESUMEN

Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aß plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n = 119) compared to control individuals (n = 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-ß. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-ß positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T + N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína GAP-43/metabolismo , Galectina 3 , Humanos , Ratones , Neurogranina , Placa Amiloide/patología , beta-Galactosidasa/metabolismo , Proteínas tau/metabolismo
11.
Mov Disord ; 37(9): 1841-1849, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35852957

RESUMEN

BACKGROUND: Previous studies suggest a link between CAG repeat number in the HTT gene and non-Huntington neurodegenerative diseases. OBJECTIVE: The aim is to analyze whether expanded HTT CAG alleles and/or their size are associated with the risk for developing α-synucleinopathies or their behavior as modulators of the phenotype. METHODS: We genotyped the HTT gene CAG repeat number and APOE-Ɛ isoforms in a case-control series including patients with either clinical or neuropathological diagnosis of α-synucleinopathy. RESULTS: We identified three Parkinson's disease (PD) patients (0.30%) and two healthy controls (0.19%) carrying low-penetrance HTT repeat expansions whereas none of the dementia with Lewy bodies (DLB) or multisystem atrophy (MSA) patients carried pathogenic HTT expansions. In addition, a clear increase in the number of HTT CAG repeats was found among DLB and PD groups influenced by the male gender and also by the APOE4 allele among DLB patients. HTT intermediate alleles' (IAs) distribution frequency increased in the MSA group compared with controls (8.8% vs. 3.9%, respectively). These differences were indeed statistically significant in the MSA group with neuropathological confirmation. Two MSA HTT CAG IAs carriers with 32 HTT CAG repeats showed isolated polyQ inclusions in pons and basal nuclei, which are two critical structures in the neurodegeneration of MSA. CONCLUSIONS: Our results point to a link between HTT CAG number, HTT IAs, and expanded HTT CAG repeats with other non-HD brain pathology and support the hypothesis that they can share common neurodegenerative pathways. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Sinucleinopatías , Alelos , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Masculino , Atrofia de Múltiples Sistemas/genética , Enfermedad de Parkinson/genética , Expansión de Repetición de Trinucleótido/genética
12.
Mov Disord ; 37(10): 2110-2121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35997131

RESUMEN

BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Atrofias Olivopontocerebelosas , Degeneración Estriatonigral , Autoanticuerpos , Autopsia , Estudio de Asociación del Genoma Completo , Humanos , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , alfa-Sinucleína/metabolismo
13.
Brain ; 144(9): 2798-2811, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34687211

RESUMEN

The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset. Linkage and association analyses provided converging evidence for a locus on chromosome Xq27.3. The minor allele A of rs1009776 was associated with an earlier onset (P = 1 × 10-5). The association with onset of dementia was replicated in an independent cohort of unrelated C9orf72 patients (P = 0.009). The protective major allele delayed the onset of dementia from 5 to 13 years on average depending on the cohort considered. The same trend was observed in an independent cohort of C9orf72 patients with extreme deviation of the age at onset (P = 0.055). No association of rs1009776 was detected in GRN patients, suggesting that the effect of rs1009776 was restricted to the onset of dementia due to C9orf72. The minor allele A is associated with a higher SLITRK2 expression based on both expression quantitative trait loci (eQTL) databases and in-house expression studies performed on C9orf72 brain tissues. SLITRK2 encodes for a post-synaptic adhesion protein. We further show that synaptic vesicle glycoprotein 2 and synaptophysin, two synaptic vesicle proteins, were decreased in frontal cortex of C9orf72 patients carrying the minor allele. Upregulation of SLITRK2 might be associated with synaptic dysfunctions and drives adverse effects in C9orf72 patients that could be modulated in those carrying the protective allele. How the modulation of SLITRK2 expression affects synaptic functions and influences the disease onset of dementia in C9orf72 carriers will require further investigations. In summary, this study describes an original approach to detect modifier genes in rare diseases and reinforces rising links between C9orf72 and synaptic dysfunctions that might directly influence the occurrence of first symptoms.


Asunto(s)
Proteína C9orf72/genética , Degeneración Lobar Frontotemporal/diagnóstico , Degeneración Lobar Frontotemporal/genética , Genes Ligados a X/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Degeneración Lobar Frontotemporal/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética
14.
Proc Natl Acad Sci U S A ; 116(51): 26038-26048, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796594

RESUMEN

Corpora amylacea (CA) in the human brain are granular bodies formed by polyglucosan aggregates that amass waste products of different origins. They are generated by astrocytes, mainly during aging and neurodegenerative conditions, and are located predominantly in periventricular and subpial regions. This study shows that CA are released from these regions to the cerebrospinal fluid and are present in the cervical lymph nodes, into which cerebrospinal fluid drains through the meningeal lymphatic system. We also show that CA can be phagocytosed by macrophages. We conclude that CA can act as containers that remove waste products from the brain and may be involved in a mechanism that cleans the brain. Moreover, we postulate that CA may contribute in some autoimmune brain diseases, exporting brain substances that interact with the immune system, and hypothesize that CA may contain brain markers that may aid in the diagnosis of certain brain diseases.


Asunto(s)
Astrocitos/metabolismo , Cuerpos de Inclusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Residuos , Anciano , Anciano de 80 o más Años , Envejecimiento , Astrocitos/inmunología , Encéfalo/patología , Sistema Glinfático , Humanos , Cuerpos de Inclusión/inmunología , Ganglios Linfáticos , Sistema Linfático , Macrófagos , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/patología , Fagocitosis , Células THP-1
15.
BMC Biol ; 19(1): 199, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503506

RESUMEN

BACKGROUND: The microtubule-associated protein tau forms aggregates in different neurodegenerative diseases called tauopathies. Prior work has shown that a single P301L mutation in tau gene, MAPT, can promote alternative tau folding pathways that correlate with divergent clinical diagnoses. Using progressive chemical denaturation, some tau preparations from the brain featured complex transitions starting at low concentrations of guanidine hydrochloride (GdnHCl) denaturant, indicating an ensemble of differently folded tau species called conformers. On the other hand, brain samples with abundant, tangle-like pathology had simple GdnHCl unfolding profile resembling the profile of fibrillized recombinant tau and suggesting a unitary conformer composition. In studies here we sought to understand tau conformer progression and potential relationships with condensed liquid states, as well as associated perturbations in cell biological processes. RESULTS: As starting material, we used brain samples from P301L transgenic mice containing tau conformer ensembles that unfolded at low GdnHCl concentrations and with signatures resembling brain material from P301L subjects presenting with language or memory problems. We seeded reporter cells expressing a soluble form of 4 microtubule-binding repeat tau fused to GFP or YFP reporter moieties, resulting in redistribution of dispersed fluorescence signals into focal assemblies that could fuse together and move within processes between adjacent cells. Nuclear envelope fluorescent tau signals and small fluorescent inclusions behaved as a demixed liquid phase, indicative of liquid-liquid phase separation (LLPS); these droplets exhibited spherical morphology, fusion events and could recover from photobleaching. Moreover, juxtanuclear tau assemblies were associated with disrupted nuclear transport and reduced cell viability in a stable cell line. Staining for thioflavin S (ThS) became more prevalent as tau-derived inclusions attained cross-sectional area greater than 3 µm2, indicating (i) a bipartite composition, (ii) in vivo progression of tau conformers, and (iii) that a mass threshold applying to demixed condensates may drive liquid-solid transitions. CONCLUSIONS: Tau conformer ensembles characterized by denaturation at low GdnHCl concentration templated the production of condensed droplets in living cells. These species exhibit dynamic changes and develop in vivo, and the larger ThS-positive assemblies may represent a waystation to arrive at intracellular fibrillar tau inclusions seen in end-stage genetic tauopathies.


Asunto(s)
Enfermedades Neurodegenerativas , Membrana Nuclear , Tauopatías , Animales , Encéfalo , Ratones , Ratones Transgénicos , Tauopatías/genética
16.
Neuropathol Appl Neurobiol ; 47(4): 579-582, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33095930

RESUMEN

We present the clinical and neuropathological findings of a patient with early onset Alzheimer's dementia (AD), heterozygous carrier of the rare Apolipoprotein E Christchurch (APOEch) variant. The patient did not harbor any pathogenic mutation in known Mendelian genes related to AD or other neurodegenerative disorders. A sibling of this patient, also carrying the APOEch variant, developed AD at the age of 66 years old. Our data suggest a possible deleterious effect of this variant, which contrast with the protective role that has been previously shown in a subject homozygous for the APOEch with he Paisa PSEN1 mutation.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Anciano , Encéfalo/patología , Heterocigoto , Humanos , Masculino , Mutación , Linaje
18.
Acta Neuropathol ; 142(3): 475-494, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34125248

RESUMEN

Heterozygous gain-of-kinase function variants in LRRK2 (leucine-rich repeat kinase 2) cause 1-2% of all cases of Parkinson's disease (PD) albeit with incomplete and age-dependent penetrance. All pathogenic LRRK2 mutations reside within the two catalytic domains of LRRK2-either in its kinase domain (e.g. G2019S) with modest effect or its ROC-COR GTPase domain (e.g. R1441G/H) with large effect on LRRK2 kinase activity. We have previously reported assays to interrogate LRRK2 kinase pathway activity in human bio-samples measuring phosphorylation of its endogenous substrate Rab10, that mirrors LRRK2 kinase activation status. Here, we isolated neutrophils from fresh peripheral blood from 101 participants including 42 LRRK2 mutation carriers (21 with the G2019S and 21 with the R1441G mutations), 27 patients with idiopathic PD, and 32 controls. Using a dual approach, LRRK2 dependent Rab10 phosphorylation at Threonine 73 (pRab10Thr73) was measured by quantitative multiplexed immunoblotting for pRab10Thr73/total Rab10 as well as targeted mass-spectrometry for absolute pRab10Thr73 occupancy. We found a significant over fourfold increase in pRab10Thr73 phosphorylation in carriers of the LRRK2 R1441G mutation irrespective of clinical disease status. The effect of the LRRK2 G2019S mutation did not reach statistical significance. Furthermore, we show that LRRK2 phosphorylation at Serine 935 is not a marker for LRRK2 kinase activity in human neutrophils. When analysing pRab10Thr73 phosphorylation in post-mortem brain samples, we observed overall high variability irrespective of clinical and LRRK2 mutation status and attributed this mainly to the adverse effect of the peri- and post-mortem period on the stability of posttranslational modifications such as protein phosphorylation. Overall, in vivo LRRK2 dependent pRab10Thr73 phosphorylation in human peripheral blood neutrophils is a specific, robust and promising biomarker for significant LRRK2 kinase hyperactivation, as with the LRRK2 R1441G mutation. Additional readouts and/or assays may be needed to increase sensitivity to detect modest LRRK2 kinase activation, as with the LRRK2 G2019S mutation. Our assays could be useful for patient stratification and target engagement studies for LRRK2 kinase inhibitors.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Neutrófilos/metabolismo , Proteínas de Unión al GTP rab/genética , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Biomarcadores , Femenino , Heterocigoto , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional
19.
Acta Neuropathol ; 139(6): 1045-1070, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32219515

RESUMEN

Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.


Asunto(s)
Degeneración Lobar Frontotemporal/genética , Proteínas tau/metabolismo , Anciano , Animales , Encéfalo/patología , Femenino , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación/genética , Fenotipo , Tauopatías/patología , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA