Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 296: 100600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33781749

RESUMEN

Ceramide-1-phosphate transfer proteins (CPTPs) are members of the glycolipid transfer protein (GLTP) superfamily that shuttle ceramide-1-phosphate (C1P) between membranes. CPTPs regulate cellular sphingolipid homeostasis in ways that impact programmed cell death and inflammation. CPTP downregulation specifically alters C1P levels in the plasma and trans-Golgi membranes, stimulating proinflammatory eicosanoid production and autophagy-dependent inflammasome-mediated cytokine release. However, the mechanisms used by CPTP to target the trans-Golgi and plasma membrane are not well understood. Here, we monitored C1P intervesicular transfer using fluorescence energy transfer (FRET) and showed that certain phosphoinositides (phosphatidylinositol 4,5 bisphosphate (PI-(4,5)P2) and phosphatidylinositol 4-phosphate (PI-4P)) increased CPTP transfer activity, whereas others (phosphatidylinositol 3-phosphate (PI-3P) and PI) did not. PIPs that stimulated CPTP did not stimulate GLTP, another superfamily member. Short-chain PI-(4,5)P2, which is soluble and does not remain membrane-embedded, failed to activate CPTP. CPTP stimulation by physiologically relevant PI-(4,5)P2 levels surpassed that of phosphatidylserine (PS), the only known non-PIP stimulator of CPTP, despite PI-(4,5)P2 increasing membrane equilibrium binding affinity less effectively than PS. Functional mapping of mutations that led to altered FRET lipid transfer and assessment of CPTP membrane interaction by surface plasmon resonance indicated that di-arginine motifs located in the α-6 helix and the α3-α4 helix regulatory loop of the membrane-interaction region serve as PI-(4,5)P2 headgroup-specific interaction sites. Haddock modeling revealed specific interactions involving the PI-(4,5)P2 headgroup that left the acyl chains oriented favorably for membrane embedding. We propose that PI-(4,5)P2 interaction sites enhance CPTP activity by serving as preferred membrane targeting/docking sites that favorably orient the protein for function.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Homeostasis , Humanos , Modelos Moleculares , Proteínas de Transferencia de Fosfolípidos/química , Conformación Proteica en Hélice alfa
2.
Anal Chem ; 92(4): 3417-3425, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31970977

RESUMEN

In vitro assessment of lipid intermembrane transfer activity by cellular proteins typically involves measurement of either radiolabeled or fluorescently labeled lipid trafficking between vesicle model membranes. Use of bilayer vesicles in lipid transfer assays usually comes with inherent challenges because of complexities associated with the preparation of vesicles and their rather short "shelf life". Such issues necessitate the laborious task of fresh vesicle preparation to achieve lipid transfer assays of high quality, precision, and reproducibility. To overcome these limitations, we have assessed model membrane generation by bicelle dilution for monitoring the transfer rates and specificity of various BODIPY-labeled sphingolipids by different glycolipid transfer protein (GLTP) superfamily members using a sensitive fluorescence resonance energy transfer approach. Robust, protein-selective sphingolipid transfer is observed using donor and acceptor model membranes generated by dilution of 0.5 q-value mixtures. The sphingolipid transfer rates are comparable to those observed between small bilayer vesicles produced by sonication or ethanol injection. Among the notable advantages of using bicelle-generated model membranes are (i) easy and straightforward preparation by means that avoid lipid fluorophore degradation and (ii) long "shelf life" after production (≥6 days) and resilience to freeze-thaw storage. The bicelle-dilution-based assay is sufficiently robust, sensitive, and stable for application, not only to purified LTPs but also for LTP activity detection in crude cytosolic fractions of cell homogenates.


Asunto(s)
Proteínas Portadoras/análisis , Membrana Dobles de Lípidos/metabolismo , Modelos Biológicos , Esfingolípidos/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Esfingolípidos/química
3.
J Biol Chem ; 293(43): 16709-16723, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30206120

RESUMEN

The glycolipid transfer protein (GLTP) fold defines a superfamily of eukaryotic proteins that selectively transport sphingolipids (SLs) between membranes. However, the mechanisms determining the protein selectivity for specific glycosphingolipids (GSLs) are unclear. Here, we report the crystal structure of the GLTP homology (GLTPH) domain of human 4-phosphate adaptor protein 2 (FAPP2) bound with N-oleoyl-galactosylceramide. Using this domain, FAPP2 transports glucosylceramide from its cis-Golgi synthesis site to the trans-Golgi for conversion into complex GSLs. The FAPP2-GLTPH structure revealed an element, termed the ID loop, that controls specificity in the GLTP family. We found that, in accordance with FAPP2 preference for simple GSLs, the ID loop protrudes from behind the SL headgroup-recognition center to mitigate binding by complex GSLs. Mutational analyses including GLTP and FAPP2 chimeras with swapped ID loops supported the proposed restrictive role of the FAPP2 ID loop in GSL selectivity. Comparative analysis revealed distinctly designed ID loops in each GLTP family member. This analysis also disclosed a conserved H-bond triplet that "clasps" both ID-loop ends together to promote structural autonomy and rigidity. The findings indicated that various ID loops work in concert with conserved recognition centers to create different specificities among family members. We also observed four bulky, conserved hydrophobic residues involved in "sensor-like" interactions with lipid chains in protein hydrophobic pockets and FF motifs in GLTP and FAPP2, well-positioned to provide acyl chain-dependent SL selectivity for the hydrophobic pockets. In summary, our study provides mechanistic insights into sphingolipid recognition by the GLTP fold and uncovers the elements involved in this recognition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Portadoras/química , Esfingolípidos/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Datos de Secuencia Molecular , Familia de Multigenes , Conformación Proteica , Alineación de Secuencia , Esfingolípidos/metabolismo
4.
Nature ; 500(7463): 463-7, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23863933

RESUMEN

Phosphorylated sphingolipids ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P) have emerged as key regulators of cell growth, survival, migration and inflammation. C1P produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production, which contributes to disease pathogenesis in asthma or airway hyper-responsiveness, cancer, atherosclerosis and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking and presentation of C1P to specific cellular sites. Vesicular trafficking is likely but non-vesicular mechanisms for C1P sensing, transfer and presentation remain unexplored. Moreover, the molecular basis for selective recognition and binding among signalling lipids with phosphate headgroups, namely C1P, phosphatidic acid or their lyso-derivatives, remains unclear. Here, a ubiquitously expressed lipid transfer protein, human GLTPD1, named here CPTP, is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding through a novel surface-localized, phosphate headgroup recognition centre connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated 'sandwich' topology identifies CPTP as the prototype for a new glycolipid transfer protein fold subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi network, nucleus and plasma membrane. RNA interference-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.


Asunto(s)
Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Eicosanoides/metabolismo , Animales , Apoproteínas/química , Ácido Araquidónico/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Ceramidas/química , Cristalografía por Rayos X , Citosol/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Proteínas de Transferencia de Fosfolípidos , Conformación Proteica , Pliegue de Proteína , Especificidad por Sustrato , Red trans-Golgi/metabolismo
5.
J Biol Chem ; 292(6): 2531-2541, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28011644

RESUMEN

Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant (acd11). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, "soluble" phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid.


Asunto(s)
Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Fosfatidilserinas/fisiología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Línea Celular , Cristalografía por Rayos X , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transferencia de Fosfolípidos , Unión Proteica , Electricidad Estática
6.
J Fluoresc ; 28(1): 79-88, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28879486

RESUMEN

Specific interactions between a mitochondrial hemoprotein cytochrome c (cyt c) and cardiolipin, a lipid component of mitochondrial membrane, are crucial to electron shuttling and apoptotic activities of this protein. In the present study the Förster resonance energy transfer (FRET) between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cyt c as an acceptor was employed to give a quantitative characterization of the protein binding to the model membranes from the mixtures of phosphatidylcholine (PC) with phosphatidylglycerol (PG), phosphatidylserine (PS) or cardiolipin (CL) in different molar ratios. The multiple arrays of the FRET data were globally analyzed in terms of the model of energy transfer in two-dimensional systems combined with the scaled particle adsorption model. The arguments in favor of the specificity of cyt c interactions with CL were obtained, including the higher adsorption potential and the deeper protein insertion in the lipid bilayer.


Asunto(s)
Cardiolipinas/metabolismo , Citocromos c/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfatidilserinas/metabolismo , Animales , Cardiolipinas/química , Citocromos c/química , Caballos , Cinética , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Fosfatidilserinas/química , Unión Proteica , Espectrometría de Fluorescencia
7.
Q Rev Biophys ; 48(3): 281-322, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25797198

RESUMEN

Glycolipid transfer proteins (GLTPs) originally were identified as small (~24 kDa), soluble, amphitropic proteins that specifically accelerate the intermembrane transfer of glycolipids. GLTPs and related homologs now are known to adopt a unique, helically dominated, two-layer 'sandwich' architecture defined as the GLTP-fold that provides the structural underpinning for the eukaryotic GLTP superfamily. Recent advances now provide exquisite insights into structural features responsible for lipid headgroup selectivity as well as the adaptability of the hydrophobic compartment for accommodating hydrocarbon chains of differing length and unsaturation. A new understanding of the structural versatility and evolutionary premium placed on the GLTP motif has emerged. Human GLTP-motifs have evolved to function not only as glucosylceramide binding/transferring domains for phosphoinositol 4-phosphate adaptor protein-2 during glycosphingolipid biosynthesis but also as selective binding/transfer proteins for ceramide-1-phosphate. The latter, known as ceramide-1-phosphate transfer protein, recently has been shown to form GLTP-fold while critically regulating Group-IV cytoplasmic phospholipase A2 activity and pro-inflammatory eicosanoid production.


Asunto(s)
Proteínas Portadoras/metabolismo , Esfingolípidos/metabolismo , Glucolípidos/metabolismo , Pliegue de Proteína
8.
Biochim Biophys Acta ; 1831(2): 417-27, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23159414

RESUMEN

Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~41°C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λ(max)~352nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) 'signature' GLTP-fold Trp fluorescence response, i.e., intensity decrease (~30%) accompanied by strongly blue-shifted λ(max) (~14nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Glicoesfingolípidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Proteínas Portadoras/química , Dicroismo Circular , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
9.
Langmuir ; 30(11): 3154-64, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24564829

RESUMEN

Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force-area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force-area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match.


Asunto(s)
Compuestos de Boro/química , Nanoestructuras/química , Fosfatidilcolinas/química , Esfingomielinas/química , Espectrometría de Fluorescencia
10.
J Lipid Res ; 54(4): 1103-13, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23369752

RESUMEN

Among amphitropic proteins, human glycolipid transfer protein (GLTP) forms a structurally-unique fold that translocates on/off membranes to specifically transfer glycolipids. Phosphatidylcholine (PC) bilayers with curvature-induced packing stress stimulate much faster glycolipid intervesicular transfer than nonstressed PC bilayers raising questions about planar cytosol-facing biomembranes being viable sites for GLTP interaction. Herein, GLTP-mediated desorption kinetics of fluorescent glycolipid (tetramethyl-boron dipyrromethene (BODIPY)-label) from lipid monolayers are assessed using a novel microfluidics-based surface balance that monitors lipid lateral packing while simultaneously acquiring surface fluorescence data. At biomembrane-like packing (30-35 mN/m), GLTP uptake of BODIPY-glycolipid from POPC monolayers was nearly nonexistent but could be induced by reducing surface pressure to mirror packing in curvature-stressed bilayers. In contrast, 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) matrices supported robust BODIPY-glycolipid uptake by GLTP at both high and low surface pressures. Unexpectedly, negatively-charged cytosol-facing lipids, i.e., phosphatidic acid and phosphatidylserine, also supported BODIPY-glycolipid uptake by GLTP at high surface pressure. Remarkably, including both 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (5 mol%) and POPE (15 mol%) in POPC synergistically activated GLTP at high surface pressure. Our study shows that matrix lipid headgroup composition, rather than molecular packing per se, is a key regulator of GLTP-fold function while demonstrating the novel capabilities of the microfluidics-based film balance for investigating protein-membrane interfacial interactions.


Asunto(s)
Proteínas Portadoras/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Microfluídica
11.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 4): 603-16, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23519669

RESUMEN

Human glycolipid transfer protein (hsGLTP) forms the prototypical GLTP fold and is characterized by a broad transfer selectivity for glycosphingolipids (GSLs). The GLTP mutation D48V near the `portal entrance' of the glycolipid binding site has recently been shown to enhance selectivity for sulfatides (SFs) containing a long acyl chain. Here, nine novel crystal structures of hsGLTP and the SF-selective mutant complexed with short-acyl-chain monoSF and diSF in different crystal forms are reported in order to elucidate the potential functional roles of lipid-mediated homodimerization. In all crystal forms, the hsGLTP-SF complexes displayed homodimeric structures supported by similarly organized intermolecular interactions. The dimerization interface always involved the lipid sphingosine chain, the protein C-terminus (C-end) and α-helices 6 and 2, but the D48V mutant displayed a `locked' dimer conformation compared with the hinge-like flexibility of wild-type dimers. Differences in contact angles, areas and residues at the dimer interfaces in the `flexible' and `locked' dimers revealed a potentially important role of the dimeric structure in the C-end conformation of hsGLTP and in the precise positioning of the key residue of the glycolipid recognition centre, His140. ΔY207 and ΔC-end deletion mutants, in which the C-end is shifted or truncated, showed an almost complete loss of transfer activity. The new structural insights suggest that ligand-dependent reversible dimerization plays a role in the function of human GLTP.


Asunto(s)
Proteínas Portadoras/química , Metabolismo de los Lípidos/fisiología , Multimerización de Proteína/fisiología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Cristalografía por Rayos X , Glicoesfingolípidos/química , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/fisiología , Humanos , Ligandos , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Relación Estructura-Actividad
12.
Biochim Biophys Acta ; 1808(1): 229-35, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20875392

RESUMEN

The in vitro activity of the ceramide transporter, CERT has been studied using a fluorescence assay. CERT is responsible for the in vivo non-vesicular trafficking of ceramide between the endoplasmic reticulum and Golgi. In this study we have examined how the membrane environment surrounding the ceramide substrate, the membrane packing density and the membrane charge, are affecting the ceramide transfer activity. To examine this we have used an anthrylvinyl-labeled ceramide analogue. We found that if ceramide is in a tightly packed environment such as in sphingomyelin or dipalmitoylphosphatidylcholine containing membranes, the CERT transfer activity is markedly reduced. Ceramide in fluid membranes on the other hand are available for CERT mediated transfer. CERT also favors membranes that contain phosphatidylinositol 4-monophospate, due to its binding capacity of the pleckstrin homology domain towards phosphatidylinositol 4-monophospate. From this study we conclude that the membrane matrix surrounding ceramide, that is ceramide miscibility, is largely affecting the transfer activity of CERT.


Asunto(s)
Ceramidas/química , Lípidos/química , Proteínas Serina-Treonina Quinasas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Catálisis , Colesterol/química , Escherichia coli/metabolismo , Polarización de Fluorescencia , Humanos , Membrana Dobles de Lípidos/química , Mutación , Fosfatos/química , Fosfatidilcolinas/química , Fosfatidilinositoles/química , Fosfolípidos/química , Esfingomielinas/química
13.
Biochemistry ; 50(23): 5163-71, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21553912

RESUMEN

The glycolipid transfer protein (GLTP) superfamily is defined by the human GLTP fold that represents a novel motif for lipid binding and transfer and for reversible interaction with membranes, i.e., peripheral amphitropic proteins. Despite limited sequence homology with human GLTP, we recently showed that HET-C2 GLTP of Podospora anserina is organized conformationally as a GLTP fold. Currently, insights into the folding stability and conformational states that regulate GLTP fold activity are almost nonexistent. To gain such insights into the disulfide-less GLTP fold, we investigated the effect of a change in pH on the fungal HET-C2 GLTP fold by taking advantage of its two tryptophans and four tyrosines (compared to three tryptophans and 10 tyrosines in human GLTP). pH-induced conformational alterations were determined by changes in (i) intrinsic tryptophan fluorescence (intensity, emission wavelength maximum, and anisotropy), (ii) circular dichroism over the near-UV and far-UV ranges, including thermal stability profiles of the derivatized molar ellipticity at 222 nm, (iii) fluorescence properties of 1-anilinonaphthalene-8-sulfonic acid, and (iv) glycolipid intermembrane transfer activity monitored by Förster resonance energy transfer. Analyses of our recently determined crystallographic structure of HET-C2 (1.9 Å) allowed identification of side chain electrostatic interactions that contribute to HET-C2 GLTP fold stability and can be altered by a change in pH. Side chain interactions include numerous salt bridges and interchain cation-π interactions, but not intramolecular disulfide bridges. Histidine residues are especially important for stabilizing the local positioning of the two tryptophan residues and the conformation of adjacent chains. Induction of a low-pH-induced, molten globule-like state inhibited glycolipid intermembrane transfer by the HET-C2 GLTP fold.


Asunto(s)
Proteínas Portadoras/química , Proteínas Fúngicas/química , Proteínas Portadoras/metabolismo , Proteínas Fúngicas/metabolismo , Glucolípidos/química , Glucolípidos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Pliegue de Proteína , Triptófano/química , Triptófano/metabolismo
14.
J Biol Chem ; 285(17): 13066-78, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20164530

RESUMEN

HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 A) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp(66), Asn(70), Lys(73), Trp(109), and His(147)) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by alpha-helices and a cooperative thermal unfolding transition of 49 degrees C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at approximately 355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum (approximately 6 nm) permitting determination of binding affinities. The unique positioning of Trp(208) at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.


Asunto(s)
Proteínas Portadoras/química , Membrana Celular/química , Proteínas Fúngicas/química , Glucolípidos/química , Pliegue de Proteína , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Fluorescencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucolípidos/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Triptófano/química , Triptófano/genética , Triptófano/metabolismo , Difracción de Rayos X
15.
Biophys J ; 99(6): 1754-63, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20858419

RESUMEN

Resonance energy transfer (RET) from anthrylvinyl-labeled phosphatidylcholine (AV-PC) or cardiolipin (AV-CL) to cytochrome c (cyt c) heme moiety was employed to assess the molecular-level details of protein interactions with lipid bilayers composed of PC with 2.5 (CL2.5), 5 (CL5), 10 (CL10), or 20 (CL20) mol % CL under conditions of varying ionic strength and lipid/protein molar ratio. Monte Carlo analysis of multiple data sets revealed a subtle interplay between 1), exchange of the neutral and acidic lipid in the protein-lipid interaction zone; 2), CL transition into the extended conformation; and 3), formation of the hexagonal phase. The switch between these states was found to be controlled by CL content and salt concentration. At ionic strengths ≥ 40 mM, lipid bilayers with CL fraction not exceeding 5 mol % exhibited the tendency to transform from lamellar to hexagonal phase upon cyt c adsorption, whereas at higher contents of CL, transition into the extended conformation seems to become thermodynamically favorable. At lower ionic strengths, deviations from homogeneous lipid distributions were observed only for model membranes containing 2.5 mol % CL, suggesting the existence of a certain surface potential critical for assembly of lipid lateral domains in protein-lipid systems that may subsequently undergo morphological transformations depending on ambient conditions. These characteristics of cyt c-CL interaction are of great interest, not only from the viewpoint of regulating cyt c electron transfer and apoptotic propensities, but also to elucidate the general mechanisms by which membrane functional activities can be modulated by protein-lipid interactions.


Asunto(s)
Citocromos c/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Metabolismo de los Lípidos , Animales , Cardiolipinas/metabolismo , Bovinos , Membrana Celular/química , Membrana Celular/metabolismo , Citocromos c/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Método de Montecarlo , Concentración Osmolar , Fosfatidilcolinas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática
16.
Biophys J ; 99(8): 2626-35, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20959104

RESUMEN

Human glycolipid transfer protein (GLTP) serves as the GLTP-fold prototype, a novel, to our knowledge, peripheral amphitropic fold and structurally unique lipid binding motif that defines the GLTP superfamily. Despite conservation of all three intrinsic Trps in vertebrate GLTPs, the Trp functional role(s) remains unclear. Herein, the issue is addressed using circular dichroism and fluorescence spectroscopy along with an atypical Trp point mutation strategy. Far-ultraviolet and near-ultraviolet circular dichroism spectroscopic analyses showed that W96F-W142Y-GLTP and W96Y-GLTP retain their native conformation and stability, whereas W85Y-W96F-GLTP is slightly altered, in agreement with relative glycolipid transfer activities of >90%, ∼85%, and ∼45%, respectively. In silico three-dimensional modeling and acrylamide quenching of Trp fluorescence supported a nativelike folding conformation. With the Trp96-less mutants, changes in emission intensity, wavelength maximum, lifetime, and time-resolved anisotropy decay induced by phosphoglyceride membranes lacking or containing glycolipid and by excitation at different wavelengths along the absorption-spectrum red edge indicated differing functions for W142 and W85. The data suggest that W142 acts as a shallow-penetration anchor during docking with membrane interfaces, whereas the buried W85 indole helps maintain proper folding and possibly regulates membrane-induced transitioning to a glycolipid-acquiring conformation. The findings illustrate remarkable versatility for Trp, providing three distinct intramolecular functions in the novel amphitropic GLTP fold.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Triptófano , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Dicroismo Circular , Polarización de Fluorescencia , Glucolípidos/metabolismo , Humanos , Modelos Moleculares , Mutagénesis , Mutación , Estructura Terciaria de Proteína , Solubilidad , Espectrometría de Fluorescencia , Factores de Tiempo
17.
Biochim Biophys Acta ; 1788(6): 1358-65, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19327342

RESUMEN

Resonance energy transfer (RET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as donors and the heme groups of cytochrome c (cyt c) as acceptors was examined in PC/PG model membranes containing 10, 20 or 40 mol% PG with an emphasis on evaluating lipid demixing caused by this protein. The differences between AV-PC and AV-PG RET profiles observed at PG content 10 mol% were attributed to cyt c ability to produce segregation of acidic lipids into lateral domains. The radius of lipid domains recovered using Monte-Carlo simulation approach was found not to exceed 4 nm pointing to the local character of cyt c-induced lipid demixing. Increase of the membrane PG content to 20 or 40 mol% resulted in domain dissipation as evidenced by the absence of any RET enhancement while recruiting AV-PG instead of AV-PC.


Asunto(s)
Citocromos c/química , Lecitinas/química , Fosfatidilgliceroles/química , Adsorción , Animales , Bovinos , Citocromos c/metabolismo , Transferencia de Energía , Liposomas , Modelos Biológicos , Método de Montecarlo , Miocardio/metabolismo , Espectrometría de Fluorescencia
18.
Biochim Biophys Acta ; 1778(5): 1213-21, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17963687

RESUMEN

Resonance energy transfer (RET) between the tryptophan residues of lysozyme as donors and anthrylvinyl-labeled phosphatidylcholine (AV-PC) or phosphatidylglycerol (AV-PG) as acceptors has been examined to gain insight into molecular level details of the interactions of lysozyme with the lipid bilayers composed of PC with 10, 20, or 40 mol% PG. Energy transfer efficiency determined from the enhanced acceptor fluorescence was found to increase with content of the acidic lipid and surface coverage. The results of RET experiments performed with lipid vesicles containing 40 mol% PG were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for an interfacial location of the two predominant lysozyme fluorophores, Trp62 and Trp108, was obtained. The RET enhancement observed while employing AV-PG instead of AV-PC as an energy acceptor was interpreted as arising from the ability of lysozyme to bring about local demixing of the neutral and charged lipids in PC/PG model membranes.


Asunto(s)
Lípidos/química , Muramidasa/química , Transferencia de Energía , Polarización de Fluorescencia , Colorantes Fluorescentes/química
19.
Biochim Biophys Acta ; 1758(6): 807-12, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16777057

RESUMEN

The glycolipid transfer protein (GLTP)-mediated movement of galactosylceramide from model membrane donor vesicles to acceptor vesicles is sensitive to the membrane environment surrounding the glycolipid. GLTP can catalyze the transfer of a fluorescently labeled GSL, anthrylvinyl-galactosylceramide (AV-GalCer), from vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and dipalmitoylphosphatidylcholine matrices, but not from vesicles prepared from N-palmitoylsphingomyelin, regardless of the cholesterol content of the vesicles. In this study, we have examined the structural features of sphingomyelin (SM) that are responsible for its inhibition of the rate of GLTP-catalyzed transfer of AV-GalCer. The rate of glycolipid transfer was enhanced when the N-palmitoyl chain of SM was replaced with an N-oleoyl chain. Analogs of N-palmitoyl-SM in which the 4,5-double bond of the long-chain base is reduced or the 3-hydroxy group is removed did not inhibit GLTP-catalyzed transfer of AV-GalCer. When the donor vesicles were prepared with phosphatidylcholines or ether-linked phosphatidylcholine analogs, the transfer rates of AV-GalCer increased with increasing degree of unsaturation. The rate of AV-GalCer transfer was strongly dependent on the unsaturation degree of the acyl and/or alkyl chains. For ester-linked PCs, the transfer rate increased in the order DPPC

Asunto(s)
Proteínas Portadoras/metabolismo , Galactosilceramidas/metabolismo , Colesterol/metabolismo , Fosfolípidos/metabolismo , Esfingomielinas/metabolismo
20.
Int J Nanomedicine ; 12: 3735-3749, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553111

RESUMEN

In a previous study, a formulation of methotrexate (MTX) incorporated in the lipid bilayer of 100-nm liposomes in the form of diglyceride ester (MTX-DG, lipophilic prodrug) was developed. In this study, first, the interactions of MTX-DG liposomes with various human and mouse tumor cell lines were studied using fluorescence techniques. The liposomes composed of egg phosphatidylcholine (PC)/yeast phosphatidylinositol/MTX-DG, 8:1:1 by mol, were labeled with fluorescent analogs of PC and MTX-DG. Carcinoma cells accumulated 5 times more MTX-DG liposomes than the empty liposomes. Studies on inhibitors of liposome uptake and processing by cells demonstrated that the formulation used multiple mechanisms to deliver the prodrug inside the cell. According to the data from the present study, undamaged liposomes fuse with the cell membrane only 1.5-2 hours after binding to the cell surface, and then, the components of liposomal bilayer enter the cell separately. The study on the time course of plasma concentration in mice showed that the area under the curve of MTX generated upon intravenous injection of MTX-DG liposomes exceeded that of intact MTX 2.5-fold. These data suggested the advantage of using liposomal formulation to treat systemic manifestation of hematological malignancies. Indeed, the administration of MTX-DG liposomes to recipient mice bearing T-cell leukemic lymphoma using a dose-sparing regimen resulted in lower toxicity and retarded lymphoma growth rate as compared with MTX.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Liposomas/administración & dosificación , Linfoma de Células T/tratamiento farmacológico , Metotrexato/administración & dosificación , Profármacos/administración & dosificación , Animales , Antimetabolitos Antineoplásicos/química , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Inyecciones Intravenosas , Leucemia/tratamiento farmacológico , Leucemia/patología , Membrana Dobles de Lípidos/química , Liposomas/química , Liposomas/metabolismo , Linfoma de Células T/patología , Metotrexato/química , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Profármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA