Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Hum Genet ; 106(1): 112-120, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883642

RESUMEN

Whole-genome sequencing (WGS) can improve assessment of low-frequency and rare variants, particularly in non-European populations that have been underrepresented in existing genomic studies. The genetic determinants of C-reactive protein (CRP), a biomarker of chronic inflammation, have been extensively studied, with existing genome-wide association studies (GWASs) conducted in >200,000 individuals of European ancestry. In order to discover novel loci associated with CRP levels, we examined a multi-ancestry population (n = 23,279) with WGS (∼38× coverage) from the Trans-Omics for Precision Medicine (TOPMed) program. We found evidence for eight distinct associations at the CRP locus, including two variants that have not been identified previously (rs11265259 and rs181704186), both of which are non-coding and more common in individuals of African ancestry (∼10% and ∼1% minor allele frequency, respectively, and rare or monomorphic in 1000 Genomes populations of East Asian, South Asian, and European ancestry). We show that the minor (G) allele of rs181704186 is associated with lower CRP levels and decreased transcriptional activity and protein binding in vitro, providing a plausible molecular mechanism for this African ancestry-specific signal. The individuals homozygous for rs181704186-G have a mean CRP level of 0.23 mg/L, in contrast to individuals heterozygous for rs181704186 with mean CRP of 2.97 mg/L and major allele homozygotes with mean CRP of 4.11 mg/L. This study demonstrates the utility of WGS in multi-ethnic populations to drive discovery of complex trait associations of large effect and to identify functional alleles in noncoding regulatory regions.


Asunto(s)
Pueblo Asiatico/genética , Población Negra/genética , Proteína C-Reactiva/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Secuenciación Completa del Genoma/métodos , Estudios de Cohortes , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento
2.
PLoS Genet ; 10(5): e1004402, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875834

RESUMEN

DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in the pathogenesis of the disorder.


Asunto(s)
Factores de Edad , Trastornos Generalizados del Desarrollo Infantil/genética , Metilación de ADN/genética , Epigénesis Genética , Mosaicismo , Adulto , Trastornos Generalizados del Desarrollo Infantil/patología , Aberraciones Cromosómicas , Femenino , Perfilación de la Expresión Génica , Genoma Humano , Haplotipos , Humanos , Masculino , Relaciones Materno-Fetales , Persona de Mediana Edad , Embarazo
3.
Circ Genom Precis Med ; 16(6): e004176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38014529

RESUMEN

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10-4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis. CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Grosor Intima-Media Carotídeo , Factores de Riesgo , Aterosclerosis/genética , Genómica
4.
Microbiol Spectr ; 9(2): e0098321, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34668724

RESUMEN

Distinct but related species of elephant endotheliotropic herpesviruses (EEHVs) circulate within Asian and African elephant populations. Primary infection with EEHVs endemic among Asian elephants can cause clinical illness and lethal EEHV hemorrhagic disease (EEHV-HD). The degree to which this occurs among African elephants has not been fully established. Recent cases of EEHV-HD caused by the EEHV3 species in African elephants housed in North American zoos has heightened concern about the susceptibility of this elephant species to EEHV-HD. In this study, we utilize the luciferase immunoprecipitation system (LIPS) to generate a serological assay specific for EEHV3 in African elephants by detecting antibodies against the EEHV3 E34 protein. The results showed that the majority of tested elephants from four separate and genetically unrelated herds, including five elephants that survived clinical illness associated with EEHV3, were positive for prior infection with EEHV3. However, African elephants who succumbed to EEHV3-HD were seronegative for EEHV3 prior to lethal infection. This supports the hypothesis that fatal EEHV-HD caused by EEHV3 is associated with primary infection rather than reactivation of latent virus. Lastly, we observed that African elephants, like Asian elephants, acquire abundant anti-EEHV antibodies prenatally and that anti-EEHV3 specific antibodies were either never detected or declined to undetectable levels in those animals that died from lethal disease following EEHV3 infection. IMPORTANCE Prior to 2019, only five cases of clinical disease from EEHV infection among African elephants had been documented. Since 2019, there have been at least seven EEHV-HD cases in North American zoos, resulting in three fatalities, all associated with EEHV3. Evidence is accumulating to suggest that EEHV-associated clinical illness and death among Asian elephants is due to primary infection and may be associated with waning anti-EEHV antibody levels in young elephants. The development of the EEHV3 serological test described in this study enabled us to confirm that similar dynamics may be contributing to EEHV-HD in African elephants. The ability to screen for EEHV immune status in African elephant calves will have a major impact on managing captive African elephant herds and will provide new tools for investigating and understanding EEHV in wild populations.


Asunto(s)
Elefantes/virología , Trastornos Hemorrágicos/veterinaria , Herpesvirus Équido 3/inmunología , Zoonosis Virales/diagnóstico , Zoonosis Virales/mortalidad , Animales , Animales de Zoológico/virología , Anticuerpos Antivirales/sangre , Femenino , Trastornos Hemorrágicos/diagnóstico , Trastornos Hemorrágicos/virología , Herpesvirus Équido 3/patogenicidad , Masculino , Pruebas Serológicas , Zoonosis Virales/patología
5.
PLoS One ; 16(8): e0244468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34432798

RESUMEN

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity among samples. Mixed allelic frequencies along the 20kb ORF1ab gene in one sample, suggested the presence of a defective viral RNA species subpopulation maintained in mixture with functional RNA in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.


Asunto(s)
COVID-19/patología , SARS-CoV-2/genética , Análisis de Secuencia de ADN/métodos , COVID-19/virología , ADN Complementario/química , ADN Complementario/metabolismo , Frecuencia de los Genes , Variación Genética , Genoma Viral , Humanos , Sistemas de Lectura Abierta/genética , ARN Viral/genética , ARN Viral/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Carga Viral
6.
bioRxiv ; 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32766579

RESUMEN

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity and provided evidence of expression of ORF10. Heterogeneous allelic frequencies along the 20kb ORF1ab gene suggested the presence of a defective interfering viral RNA species subpopulation in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.

7.
bioRxiv ; 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33330863

RESUMEN

The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity and provided evidence of expression of ORF10. Heterogeneous allelic frequencies along the 20kb ORF1ab gene suggested the presence of a defective interfering viral RNA species subpopulation in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.

8.
Cell Rep ; 29(6): 1675-1689.e9, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693904

RESUMEN

Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Neurofibromina 1/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/metabolismo , Niño , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Genómica , Humanos , Ratones , Mutación , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Recurrencia , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuenciación del Exoma , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA