RESUMEN
PURPOSE: FGFR1 amplification (FGFR1amp) is recurrent in metastatic breast cancer (MBC) and is associated with resistance to endocrine therapy and CDK4/6 inhibitors (CDK4/6is). Multi-tyrosine kinase inhibitors (MTKIs) and selective pan-FGFR inhibitors (FGFRis) are being developed for FGFR1amp breast cancer. High-level FGFR amplification and protein expression by IHC have identified breast cancer responders to FGFRis or MTKIs, respectively. EXPERIMENTAL DESIGN: Here, we used preclinical models and patient samples to identify predictive biomarkers to these drugs. We evaluated the antitumor activity of an FGFRi and an MTKI in a collection of 17 breast cancer patient-derived xenografts (PDXs) harboring amplification in FGFR1/2/3/4 and in 10 patients receiving either an FGFRi/MTKI. mRNA levels were measured on FFPE tumor samples using two commercial strategies. Proliferation and angiogenesis were evaluated by detecting Ki-67 and CD31 in viable areas by immunofluorescence. RESULTS: High FGFR1-4 mRNA levels but not copy-number alteration (CNA) is associated with FGFRi response. Treatment with MTKIs showed higher response rates than with FGFRis (86% vs. 53%), regardless of the FGFR1-4 mRNA levels. FGFR-addicted PDXs exhibited an antiproliferative response to either FGFRis or MTKIs, and PDXs exclusively sensitive to MTKI exhibited an additional antiangiogenic response. Consistently, the clinical benefit of MTKIs was not associated with high FGFR1-4 mRNA levels and was observed in patients previously treated with antiangiogenic drugs. CONCLUSIONS: Tailored therapy with FGFRis in molecularly selected MBC based on high FGFR1-4 mRNA levels warrants prospective validation in patients with CDK4/6i-resistant luminal breast cancer and in patients with TNBC without targeted therapeutic options.
Asunto(s)
Neoplasias de la Mama , ARN Mensajero , Proteínas Tirosina Quinasas Receptoras , Femenino , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de SeñalRESUMEN
Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid ß-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.
Asunto(s)
Adiposidad , Células Endoteliales , Animales , Células Endoteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , PoliaminasRESUMEN
Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.
Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Animales , Homeostasis , Grasa Intraabdominal/metabolismo , Ratones , Obesidad/genética , Obesidad/metabolismo , ProteómicaRESUMEN
PURPOSE: Mutations in the PI3K pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacologic intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR-targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. EXPERIMENTAL DESIGN: In the current study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α-selective (GDC-0326) inhibitors and isoform-specific PI3K kinase-dead-mutant mice. RESULTS: Human and mouse PanNETs showed enhanced pAKT, pPRAS40, and pS6 positivity compared with normal tissue. Although treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node metastasis compared with vehicle-treated mice. We also demonstrated that tumor and stromal cells are implicated in the antitumor activity of GDC-0326 in RIP1-Tag2 tumors. CONCLUSIONS: Our data provide a rationale for p110α-selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. Clin Cancer Res; 22(23); 5805-17. ©2016 AACR.