Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Pathol ; 182(4): 1099-106, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23375622

RESUMEN

Osteoarthritis (OA) is an age-related progressive degenerative joint disease. Peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor, is suggested as an attractive therapeutic target to counteract degradative mechanisms associated with OA. Studies suggest that activation of PPARγ by its agonists can reduce the synthesis of OA catabolic and inflammatory factors and the development of cartilage lesions in OA animal models. Because these agonists impart several PPARγ-independent effects, the specific in vivo function of PPARγ in cartilage homeostasis and OA remains largely unknown. Herein, we describe the in vivo role of PPARγ in OA using cartilage-specific PPARγ knockout (KO) mice generated using the Cre-lox system. Adult PPARγ KO mice exhibited a spontaneous OA phenotype associated with enhanced cartilage degradation, hypocellularity, synovial and cartilage fibrosis, synovial inflammation, mononuclear cell influx in the synovium, and increased expression of catabolic factors, including matrix metalloproteinase-13, accompanied by an increase in staining for matrix metalloproteinase-generated aggrecan and type II collagen neoepitopes (VDIPEN and C1-2C). We demonstrate that PPARγ-deficient articular cartilage exhibits elevated expression of the additional catabolic factors hypoxia-inducible factor-2α, syndecan-4, and a disintegrin and metalloproteinase with thrombospondin motifs 5 and of the inflammatory factors cyclooxygenase-2 and inducible nitric oxide synthase. In conclusion, PPARγ is a critical regulator of cartilage health, the lack of which leads to an accelerated spontaneous OA phenotype.


Asunto(s)
Envejecimiento/metabolismo , Cartílago/metabolismo , Cartílago/patología , Osteoartritis/metabolismo , Osteoartritis/patología , PPAR gamma/deficiencia , Animales , Biomarcadores/metabolismo , Fibrosis , Eliminación de Gen , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos , PPAR gamma/metabolismo , Fenotipo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
2.
Arthritis Rheum ; 64(5): 1551-61, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22131019

RESUMEN

OBJECTIVE: Long bones develop through the strictly regulated process of endochondral ossification within the growth plate, resulting in the replacement of cartilage by bone. Defects in this process can result in skeletal abnormalities and a predisposition to degenerative joint diseases such as osteoarthritis (OA). Studies suggest that activation of the transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is an important therapeutic target in OA. To devise PPARγ-related therapies in OA, it is critical to identify the role of this transcription factor in cartilage biology. Therefore, this study sought to determine the in vivo role of PPARγ in endochondral ossification and cartilage development, using cartilage-specific PPARγ-knockout (KO) mice. METHODS: Cartilage-specific PPARγ-KO mice were generated using the Cre/loxP system. Histomorphometric and immunohistochemical analyses were performed to assess the patterns of ossification, proliferation, differentiation, and hypertrophy of chondrocytes, skeletal organization, bone density, and calcium deposition in the KO mice. RESULTS: PPARγ-KO mice exhibited reductions in body length, body weight, length of the long bones, skeletal growth, cellularity, bone density, calcium deposition, and trabecular bone thickness, abnormal organization of the growth plate, loss of columnar organization, shorter hypertrophic zones, and delayed primary and secondary ossification. Immunohistochemical analyses for Sox9, 5-bromo-2'-deoxyuridine, p57, type X collagen, and platelet endothelial cell adhesion molecule 1 revealed reductions in the differentiation, proliferation, and hypertrophy of chondrocytes and in vascularization of the growth plate in mutant mice. Isolated chondrocytes and cartilage explants from mutant mice showed aberrant expression of Sox9 and extracellular matrix markers, including aggrecan, type II collagen, and matrix metalloproteinase 13. In addition, chondrocytes from mutant mice exhibited enhanced phosphorylation of p38 and decreased expression of Indian hedgehog. CONCLUSION: The presence of PPARγ is required for normal endochondral ossification and cartilage development in vivo.


Asunto(s)
Huesos/patología , Cartílago/patología , Condrocitos/metabolismo , Condrogénesis/fisiología , Osteogénesis/fisiología , PPAR gamma/biosíntesis , Animales , Biomarcadores/metabolismo , Densidad Ósea , Desarrollo Óseo , Huesos/metabolismo , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas Hedgehog/metabolismo , Hipertrofia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/deficiencia , PPAR gamma/genética , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Arthritis Res Ther ; 13(1): R6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21266028

RESUMEN

INTRODUCTION: Microsomal prostaglandin E2 synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase (COX) to specifically catalyze the conversion of prostaglandin (PG) H2 to PGE2. mPGES-1 plays a key role in inflammation, pain and arthritis; however, the role of mPGES-1 in fibrogenesis is largely unknown. Herein, we examine the role of mPGES-1 in a mouse model of skin scleroderma using mice deficient in mPGES-1. METHODS: Wild type (WT) and mPGES-1 null mice were subjected to the bleomycin model of cutaneous skin scleroderma. mPGES-1 expressions in scleroderma fibroblasts and in fibroblasts derived from bleomycin-exposed mice were assessed by Western blot analysis. Degree of fibrosis, dermal thickness, inflammation, collagen content and the number of α-smooth muscle actin (α-SMA)-positive cells were determined by histological analyses. The quantity of the collagen-specific amino acid hydroxyproline was also measured. RESULTS: Compared to normal skin fibroblasts, mPGES-1 protein expression was elevated in systemic sclerosis (SSc) fibroblasts and in bleomycin-exposed mice. Compared to WT mice, mPGES-1-null mice were resistant to bleomycin-induced inflammation, cutaneous thickening, collagen production and myofibroblast formation. CONCLUSIONS: mPGES-1 expression is required for bleomycin-induced skin fibrogenesis. Inhibition of mPGES-1 may be a viable method to alleviate the development of cutaneous sclerosis and is a potential therapeutic target to control the onset of fibrogenesis.


Asunto(s)
Oxidorreductasas Intramoleculares/metabolismo , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Western Blotting , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibrosis/inducido químicamente , Fibrosis/metabolismo , Fibrosis/patología , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Oxidorreductasas Intramoleculares/deficiencia , Masculino , Ratones , Ratones Noqueados , Prostaglandina-E Sintasas , Esclerodermia Sistémica/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA