Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Chem ; 67(1): 380-401, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38147525

RESUMEN

Salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 are serine/threonine kinases and form a subfamily of the protein kinase AMP-activated protein kinase (AMPK) family. Inhibition of SIKs in stimulated innate immune cells and mouse models has been associated with a dual mechanism of action consisting of a reduction of pro-inflammatory cytokines and an increase of immunoregulatory cytokine production, suggesting a therapeutic potential for inflammatory diseases. Following a high-throughput screening campaign, subsequent hit to lead optimization through synthesis, structure-activity relationship, kinome selectivity, and pharmacokinetic investigations led to the discovery of clinical candidate GLPG3312 (compound 28), a potent and selective pan-SIK inhibitor (IC50: 2.0 nM for SIK1, 0.7 nM for SIK2, and 0.6 nM for SIK3). Characterization of the first human SIK3 crystal structure provided an understanding of the binding mode and kinome selectivity of the chemical series. GLPG3312 demonstrated both anti-inflammatory and immunoregulatory activities in vitro in human primary myeloid cells and in vivo in mouse models.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Humanos , Expresión Génica , Citocinas
2.
J Med Chem ; 67(7): 5233-5258, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38552030

RESUMEN

The salt-inducible kinases (SIKs) SIK1, SIK2, and SIK3 belong to the adenosine monophosphate-activated protein kinase (AMPK) family of serine/threonine kinases. SIK inhibition represents a new therapeutic approach modulating pro-inflammatory and immunoregulatory pathways that holds potential for the treatment of inflammatory diseases. Here, we describe the identification of GLPG3970 (32), a first-in-class dual SIK2/SIK3 inhibitor with selectivity against SIK1 (IC50 of 282.8 nM on SIK1, 7.8 nM on SIK2 and 3.8 nM on SIK3). We outline efforts made to increase selectivity against SIK1 and improve CYP time-dependent inhibition properties through the structure-activity relationship. The dual activity of 32 in modulating the pro-inflammatory cytokine TNFα and the immunoregulatory cytokine IL-10 is demonstrated in vitro in human primary myeloid cells and human whole blood, and in vivo in mice stimulated with lipopolysaccharide. Compound 32 shows dose-dependent activity in disease-relevant mouse pharmacological models.


Asunto(s)
Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Ratones , Humanos , Animales , Proteínas Quinasas/metabolismo , Citocinas , Factor de Necrosis Tumoral alfa
3.
J Med Chem ; 64(6): 2937-2952, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33719441

RESUMEN

There are currently no approved disease-modifying osteoarthritis (OA) drugs (DMOADs). The aggrecanase ADAMTS-5 is key in the degradation of human aggrecan (AGC), a component of cartilage. Therefore, ADAMTS-5 is a promising target for the identification of DMOADs. We describe the discovery of GLPG1972/S201086, a potent and selective ADAMTS-5 inhibitor obtained by optimization of a promising hydantoin series following an HTS. Biochemical activity against rat and human ADAMTS-5 was assessed via a fluorescence-based assay. ADAMTS-5 inhibitory activity was confirmed with human aggrecan using an AGC ELISA. The most promising compounds were selected based on reduction of glycosaminoglycan release after interleukin-1 stimulation in mouse cartilage explants and led to the discovery of GLPG1972/S201086. The anticatabolic activity was confirmed in mouse cartilage explants (IC50 < 1.5 µM). The cocrystal structure of GLPG1972/S201086 with human recombinant ADAMTS-5 is discussed. GLPG1972/S201086 has been investigated in a phase 2 clinical study in patients with knee OA (NCT03595618).


Asunto(s)
Proteína ADAMTS5/antagonistas & inhibidores , Osteoartritis/tratamiento farmacológico , Proteína ADAMTS5/metabolismo , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Perros , Glicosaminoglicanos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Osteoartritis/metabolismo , Ratas
4.
Mol Cancer Ther ; 19(1): 63-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548293

RESUMEN

Autotaxin catalyzes the formation of lysophosphatidic acid, which stimulates tumor growth and metastasis and decreases the effectiveness of cancer therapies. In breast cancer, autotaxin is secreted mainly by breast adipocytes, especially when stimulated by inflammatory cytokines produced by tumors. In this work, we studied the effects of an ATX inhibitor, GLPG1690, which is in phase III clinical trials for idiopathic pulmonary fibrosis, on responses to radiotherapy and chemotherapy in a syngeneic orthotopic mouse model of breast cancer. Tumors were treated with fractionated external beam irradiation, which was optimized to decrease tumor weight by approximately 80%. Mice were also dosed twice daily with GLPG1690 or vehicle beginning at 1 day before the radiation until 4 days after radiation was completed. GLPG1690 combined with irradiation did not decrease tumor growth further compared with radiation alone. However, GLPG1690 decreased the uptake of 3'-deoxy-3'-[18F]-fluorothymidine by tumors and the percentage of Ki67-positive cells. This was also associated with increased cleaved caspase-3 and decreased Bcl-2 levels in these tumors. GLPG1690 decreased irradiation-induced C-C motif chemokine ligand-11 in tumors and levels of IL9, IL12p40, macrophage colony-stimulating factor, and IFNγ in adipose tissue adjacent to the tumor. In other experiments, mice were treated with doxorubicin every 2 days after the tumors developed. GLPG1690 acted synergistically with doxorubicin to decrease tumor growth and the percentage of Ki67-positive cells. GLPG1690 also increased 4-hydroxynonenal-protein adducts in these tumors. These results indicate that inhibiting ATX provides a promising adjuvant to improve the outcomes of radiotherapy and chemotherapy for breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Imidazoles/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Imidazoles/farmacología , Ratones , Pirimidinas/farmacología
5.
J Med Chem ; 60(17): 7371-7392, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28731719

RESUMEN

Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX-LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo[1,2-a]pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS). A cocrystal structure with one of these compounds and ATX revealed a novel binding mode with occupancy of the hydrophobic pocket and channel of ATX but no interaction with zinc ions of the catalytic site. Exploration of the structure-activity relationship led to compounds displaying high activity in biochemical and plasma assays, exemplified by compound 40. Compound 40 was also able to decrease the plasma LPA levels upon oral administration to rats.


Asunto(s)
Imidazoles/química , Imidazoles/farmacología , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Piridinas/química , Piridinas/farmacología , Animales , Humanos , Imidazoles/farmacocinética , Lisofosfatidilcolinas/metabolismo , Lisofosfolípidos/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/farmacocinética , Hidrolasas Diéster Fosfóricas/química , Piridinas/farmacocinética , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
6.
J Med Chem ; 60(9): 3580-3590, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28414242

RESUMEN

Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound 1, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (11). Compound 11 was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound 11 is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Imidazoles/uso terapéutico , Hidrolasas Diéster Fosfóricas/efectos de los fármacos , Pirimidinas/uso terapéutico , Animales , Humanos , Imidazoles/farmacología , Ratones , Ratones Noqueados , Hidrolasas Diéster Fosfóricas/genética , Pirimidinas/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA