Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(11): 4227-32, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371599

RESUMEN

Quantitative trait loci (QTL) mapping is a powerful tool for investigating the genetic basis of natural variation. QTL can be mapped using a number of different population designs, but recombinant inbred lines (RILs) are among the most effective. Unfortunately, homozygous RIL populations are time consuming to construct, typically requiring at least six generations of selfing starting from a heterozygous F(1). Haploid plants produced from an F(1) combine the two parental genomes and have only one allele at every locus. Converting these sterile haploids into fertile diploids (termed "doubled haploids," DHs) produces immortal homozygous lines in only two steps. Here we describe a unique technique for rapidly creating recombinant doubled haploid populations in Arabidopsis thaliana: centromere-mediated genome elimination. We generated a population of 238 doubled haploid lines that combine two parental genomes and genotyped them by reduced representation Illumina sequencing. The recombination rate and parental allele frequencies in our population are similar to those found in existing RIL sets. We phenotyped this population for traits related to flowering time and for petiole length and successfully mapped QTL controlling each trait. Our work demonstrates that doubled haploid populations offer a rapid, easy alternative to RILs for Arabidopsis genetic analysis.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Haploidia , Sitios de Carácter Cuantitativo/genética , Cruzamientos Genéticos , Flores/genética , Flores/fisiología , Genética de Población , Técnicas de Genotipaje , Heterocigoto , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Carácter Cuantitativo Heredable , Recombinación Genética/genética , Análisis de Secuencia de ADN
2.
BMC Genomics ; 13: 72, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22333298

RESUMEN

BACKGROUND: The availability of low cost sequencing has spurred its application to discovery and typing of variation, including variation induced by mutagenesis. Mutation discovery is challenging as it requires a substantial amount of sequencing and analysis to detect very rare changes and distinguish them from noise. Also challenging are the cases when the organism of interest has not been sequenced or is highly divergent from the reference. RESULTS: We describe the development of a simple method for reduced representation sequencing. Input DNA was digested with a single restriction enzyme and ligated to Y adapters modified to contain a sequence barcode and to provide a compatible overhang for ligation. We demonstrated the efficiency of this method at SNP discovery using rice and arabidopsis. To test its suitability for the discovery of very rare SNP, one control and three mutagenized rice individuals (1, 5 and 10 mM sodium azide) were used to prepare genomic libraries for Illumina sequencers by ligating barcoded adapters to NlaIII restriction sites. For genome-dependent discovery 15-30 million of 80 base reads per individual were aligned to the reference sequence achieving individual sequencing coverage from 7 to 15×. We identified high-confidence base changes by comparing sequences across individuals and identified instances consistent with mutations, i.e. changes that were found in a single treated individual and were solely GC to AT transitions. For genome-independent discovery 70-mers were extracted from the sequence of the control individual and single-copy sequence was identified by comparing the 70-mers across samples to evaluate copy number and variation. This de novo "genome" was used to align the reads and identify mutations as above. Covering approximately 1/5 of the 380 Mb genome of rice we detected mutation densities ranging from 0.6 to 4 per Mb of diploid DNA depending on the mutagenic treatment. CONCLUSIONS: The combination of a simple and cost-effective library construction method, with Illumina sequencing, and the use of a bioinformatic pipeline allows practical SNP discovery regardless of whether a genomic reference is available.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Genoma de Planta , Mutación , Análisis de Secuencia de ADN/métodos , Arabidopsis/genética , Genotipo , Oryza/genética , Polimorfismo de Nucleótido Simple , Valores de Referencia , Análisis de Secuencia de ADN/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA