RESUMEN
There is a widespread interest in applying pattern recognition methods to anatomical neuroimaging data, but so far, there has been relatively little investigation into how best to derive image features in order to make the most accurate predictions. In this work, a Gaussian Process machine learning approach was used for predicting age, gender and body mass index (BMI) of subjects in the IXI dataset, as well as age, gender and diagnostic status using the ABIDE and COBRE datasets. MRI data were segmented and aligned using SPM12, and a variety of feature representations were derived from this preprocessing. We compared classification and regression accuracy using the different sorts of features, and with various degrees of spatial smoothing. Results suggested that feature sets that did not ignore the implicit background tissue class, tended to result in better overall performance, whereas some of the most commonly used feature sets performed relatively poorly.
Asunto(s)
Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Conjuntos de Datos como Asunto , Humanos , Aprendizaje AutomáticoRESUMEN
Clinical, cognitive, and atrophy characteristics depending on sex have been previously reported in Parkinson's disease (PD). However, though sex differences in cortical gray matter measures in early drug naïve patients have been described, little is known about differences in cortical thickness (CTh) as the disease advances. Our multi-site sample comprised 211 non-demented PD patients (64.45% males; mean age 65.58 ± 8.44 years old; mean disease duration 6.42 ± 5.11 years) and 86 healthy controls (50% males; mean age 65.49 ± 9.33 years old) with available T1-weighted 3 T MRI data from four international research centers. Sex differences in regional mean CTh estimations were analyzed using generalized linear models. The relation of CTh in regions showing sex differences with age, disease duration, and age of onset was examined through multiple linear regression. PD males showed thinner cortex than PD females in six frontal (bilateral caudal middle frontal, bilateral superior frontal, left precentral and right pars orbitalis), three parietal (bilateral inferior parietal and left supramarginal), and one limbic region (right posterior cingulate). In PD males, lower CTh values in nine out of ten regions were associated with longer disease duration and older age, whereas in PD females, lower CTh was associated with older age but with longer disease duration only in one region. Overall, male patients show a more widespread pattern of reduced CTh compared with female patients. Disease duration seems more relevant to explain reduced CTh in male patients, suggesting worse prognostic over time. Further studies should explore sex-specific cortical atrophy trajectories using large longitudinal multi-site data.
RESUMEN
OBJECTIVE: This research aims to study structural brain changes in patients with persistent olfactory dysfunctions after coronavirus disease 2019 (COVID-19). METHODS: COVID-19 patients were evaluated using T1-weighted and diffusion tensor imaging (DTI) on a 3T MRI scanner, 9.94 ± 3.83 months after COVID-19 diagnosis. Gray matter (GM) voxel-based morphometry was performed using FSL-VBM. Voxelwise statistical analysis of the fractional anisotropy, mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity was carried out with the tract-based spatial statistics in the olfactory system. The smell identification test (UPSIT) was used to classify patients as normal olfaction or olfactory dysfunction groups. Intergroup comparisons between GM and DTI measures were computed, as well as correlations with the UPSIT scores. RESULTS: Forty-eight COVID-19 patients were included in the study. Twenty-three were classified as olfactory dysfunction, and 25 as normal olfaction. The olfactory dysfunction group had lower GM volume in a cluster involving the left amygdala, insular cortex, parahippocampal gyrus, frontal superior and inferior orbital gyri, gyrus rectus, olfactory cortex, caudate, and putamen. This group also showed higher MD values in the genu of the corpus callosum, the orbitofrontal area, the anterior thalamic radiation, and the forceps minor; and higher RD values in the anterior corona radiata, the genu of the corpus callosum, and uncinate fasciculus compared with the normal olfaction group. The UPSIT scores for the whole sample were negatively associated with both MD and RD values (p-value ≤0.05 FWE-corrected). INTERPRETATION: There is decreased GM volume and increased MD in olfactory-related regions explaining prolonged olfactory deficits in post-acute COVID-19 patients.
Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Olfato , Imagen de Difusión Tensora/métodos , Prueba de COVID-19 , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/etiologíaRESUMEN
Rapid eye movement sleep behavior disorder (RBD) is associated with high likelihood of prodromal Parkinson's disease (PD) and is common in de novo PD. It is associated with greater cognitive impairment and brain atrophy. However, the relation between structural brain characteristics and cognition remains poorly understood. We aimed to investigate subcortical and cortical atrophy in de novo PD with probable RBD (PD-pRBD) and to relate it with cognitive impairment. We analyzed volumetry, cortical thickness, and cognitive measures from 79 PD-pRBD patients, 126 PD without probable RBD patients (PD-non pRBD), and 69 controls from the Parkinson's Progression Markers Initiative (PPMI). Regression models of cognition were tested using magnetic resonance imaging measures as predictors. We found lower left thalamus volume in PD-pRBD compared with PD-non pRBD. Compared with controls, PD-pRBD group showed atrophy in the bilateral putamen, left hippocampus, left amygdala, and thinning in the right superior temporal gyrus. Specific deep gray matter nuclei volumes were associated with impairment in global cognition, phonemic fluency, processing speed, and visuospatial function in PD-pRBD. In conclusion, cognitive impairment and gray matter atrophy are already present in de novo PD-pRBD. Thalamus, hippocampus, and putamen volumes were mainly associated with these cognitive deficits.
RESUMEN
BACKGROUND: The presence of rapid eye movement sleep behavior disorder (RBD) contributes to increase cognitive impairment and brain atrophy in Parkinson's disease (PD), but the impact of sex is unclear. We aimed to investigate sex differences in cognition and brain atrophy in PD patients with and without probable RBD (pRBD). METHODS: Magnetic resonance imaging and cognition data were obtained for 274 participants from the Parkinson's Progression Marker Initiative database: 79 PD with pRBD (PD-pRBD; male/female, 54/25), 126 PD without pRBD (PD-non pRBD; male/female, 73/53), and 69 healthy controls (male/female, 40/29). FreeSurfer was used to obtain volumetric and cortical thickness data. RESULTS: Males showed greater global cortical and subcortical gray matter atrophy than females in the PD-pRBD group. Significant group-by-sex interactions were found in the pallidum. Structures showing a within-group sex effect in the deep gray matter differed, with significant volume reductions for males in one structure in in PD-non pRBD (brainstem), and three in PD-pRBD (caudate, pallidum and brainstem). Significant group-by-sex interactions were found in Montreal Cognitive Assessment (MoCA) and Symbol Digits Modalities Test (SDMT). Males performed worse than females in MoCA, phonemic fluency and SDMT in the PD-pRBD group. CONCLUSION: Male sex is related to increased cognitive impairment and subcortical atrophy in de novo PD-pRBD. Accordingly, we suggest that sex differences are relevant and should be considered in future clinical and translational research.
Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Femenino , Humanos , Masculino , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Caracteres SexualesRESUMEN
Background and Objective: Brain atrophy and cognitive impairment in neurodegenerative diseases are influenced by sex. We aimed to investigate sex differences in brain atrophy and cognition in de novo Parkinson's disease (PD) patients. Methods: Clinical, neuropsychological and T1-weighted MRI data from 205 PD patients (127 males: 78 females) and 69 healthy controls (40 males: 29 females) were obtained from the PPMI dataset. Results: PD males had a greater motor and rapid eye movement sleep behavior disorder symptomatology than PD females. They also showed cortical thinning in postcentral and precentral regions, greater global cortical and subcortical atrophy and smaller volumes in thalamus, caudate, putamen, pallidum, hippocampus, and brainstem, compared with PD females. Healthy controls only showed reduced hippocampal volume in males compared to females. PD males performed worse than PD females in global cognition, immediate verbal recall, and mental processing speed. In both groups males performed worse than females in semantic verbal fluency and delayed verbal recall; as well as females performed worse than males in visuospatial function. Conclusions: Sex effect in brain and cognition is already evident in de novo PD not explained by age per se, being a relevant factor to consider in clinical and translational research in PD.
RESUMEN
Previous studies have shown that the gene encoding the adhesion G protein-coupled receptor L3 (ADGRL3; formerly latrophilin 3, LPHN3) is associated with Attention-Deficit/Hyperactivity Disorder (ADHD). Conversely, no studies have investigated the anatomical or functional brain substrates of ADGRL3 risk variants. We examined here whether individuals with different ADGRL3 haplotypes, including both patients with ADHD and healthy controls, showed differences in brain anatomy and function. We recruited and genotyped adult patients with combined type ADHD and healthy controls to achieve a sample balanced for age, sex, premorbid IQ, and three ADGRL3 haplotype groups (risk, protective, and others). The final sample (n = 128) underwent structural and functional brain imaging (voxel-based morphometry and n-back working memory fMRI). We analyzed the brain structural and functional effects of ADHD, haplotypes, and their interaction, covarying for age, sex, and medication. Individuals (patients or controls) with the protective haplotype showed strong, widespread hypo-activation in the frontal cortex extending to inferior temporal and fusiform gyri. Individuals (patients or controls) with the risk haplotype also showed hypo-activation, more focused in the right temporal cortex. Patients showed parietal hyper-activation. Disorder-haplotype interactions, as well as structural findings, were not statistically significant. To sum up, both protective and risk ADGRL3 haplotypes are associated with substantial brain hypo-activation during working memory tasks, stressing this gene's relevance in cognitive brain function. Conversely, we did not find brain effects of the interactions between adult ADHD and ADGRL3 haplotypes.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/genética , Encéfalo/metabolismo , Encéfalo/fisiopatología , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Adulto , Estudios de Casos y Controles , Femenino , Neuroimagen Funcional , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: Optical coherence tomography (OCT) of the retina is a fast and easily accessible tool for the quantification of retinal structural measurements. Multiple studies show that patients with Alzheimer's disease (AD) exhibit thinning in several retinal layers compared to age-matched controls. Subjective cognitive decline (SCD) has been proposed as a risk factor for progression to AD. There is little data about retinal changes in preclinical AD and their correlation with amyloid-ß (Aß) uptake. AIMS: We investigated the association of retinal thickness quantified by OCT with Aß accumulation and conversion to mild cognitive impairment (MCI) over 24 months in individuals with SCD. METHODS: One hundred twenty-nine individuals with SCD enrolled in Fundació ACE Healthy Brain Initiative underwent comprehensive neuropsychological testing, OCT scan of the retina and florbetaben (FBB) positron emission tomography (PET) at baseline (v0) and after 24 months (v2). We assessed the association of sixteen retinal thickness measurements at baseline with FBB-PET status (+/-) and global standardize uptake value ratio (SUVR) as a continuous measure at v0 and v2 and their predictive value on clinical status change (conversion to mild cognitive impairment (MCI)) at v2. RESULTS: Mean age of the sample was 64.72 ± 7.27 years; 62.8% were females. Fifteen participants were classified as FBB-PET+ at baseline and 22 at v2. Every 1 µm of increased thickness in the inner nasal macular region conferred 8% and 6% higher probability of presenting a FBB-PET+ status at v0 (OR = 1.08, 95% CI = 1.02-1.14, p = 0.007) and v2 (OR = 1.06, 95% CI = 1.02-1.11, p = 0.004), respectively. Inner nasal macular thickness also positively correlated with global SUVR (at v0: ß = 0.23, p = 0.004; at v2: ß = 0.26, p = 0.001). No retinal measurements were associated to conversion to MCI over 24 months. CONCLUSIONS: Subtle retinal thickness changes in the macular region are already present in SCD and correlate with Aß uptake.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Retina , Anciano , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Retina/diagnóstico por imagen , Retina/patologíaRESUMEN
OBJECTIVES: The aim of this study was to investigate whether hyponatremia is a risk factor of overt hepatic encephalopathy (HE) in cirrhosis. METHODS: A total of 61 patients with cirrhosis were evaluated prospectively for 1 year and all episodes of overt HE were recorded. Predictive factors of HE were analyzed using a conditional model (Prentice, Williams, and Peterson) for recurrent events to assess the relationship between HE and time-dependent covariates. The effects of hyponatremia on the brain concentration of organic osmolytes were analyzed in 25 patients using 1 H-magnetic resonance spectroscopy. RESULTS: Twenty-eight of the 61 patients developed 57 episodes of overt HE during follow-up. Among a number of clinical and laboratory variables analyzed, the only independent predictive factors of overt HE were hyponatremia (serum sodium < 130 mEq / l), history of overt HE, serum bilirubin,and serum creatinine. Hyponatremia was associated with low brain concentration of organic osmolytes, particularly myo-inositol (MI). Furthermore, patients with low brain MI levels had a higher probability of development of overt HE compared with that of patients with high brain MI levels. CONCLUSIONS: In patients with cirrhosis, the existence of hyponatremia is a major risk factor of the development of overt HE. Treatment of hyponatremia may be a novel therapeutic approach to preventing HE in cirrhosis.
Asunto(s)
Encefalopatía Hepática/etiología , Hiponatremia/complicaciones , Cirrosis Hepática/complicaciones , Sodio/sangre , Adulto , Anciano , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análisis , Bilirrubina/sangre , Química Encefálica/fisiología , Creatina/análisis , Creatinina/sangre , Femenino , Estudios de Seguimiento , Ácido Glutámico/análisis , Glutamina/análisis , Encefalopatía Hepática/diagnóstico , Encefalopatía Hepática/metabolismo , Humanos , Hiponatremia/sangre , Hiponatremia/diagnóstico , Cirrosis Hepática/sangre , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Parietal , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Factores de TiempoRESUMEN
Cerebrospinal fluid (CSF) YKL40 and sTREM2 are astroglial and microglial activity biomarkers, respectively. We assessed whether CSF YKL40 and sTREM2 baseline levels are associated with longitudinal brain volume and diffusivity changes in cognitively unimpaired adults. Two brain MRI scans of 36 participants (57 to 78-years old, 12 male) were acquired in a 2-year interval. Aß42, p-tau, YKL40 and sTREM2 concentrations in CSF were determined at baseline. We calculated gray and white matter volume changes per year maps (ΔGM and ΔWM, respectively) by means of longitudinal pairwise registration, and mean diffusivity variation per year (ΔMD) by subtraction. We checked voxel-wise for associations between ΔGM, ΔWM and ΔMD and baseline CSF level of YKL40 and sTREM2 and verified to what extent these associations were modulated by age (YKL40xAGE and sTREM2xAGE interactions). We found a positive association between ΔGM and YKL40 in the left inferior parietal region and no association between sTREM2 and ΔGM. Negative associations were also observed between ΔGM and YKL40xAGE (bilateral frontal areas, left precuneus and left postcentral and supramarginal gyri) and sTREM2xAGE (bilateral temporal and frontal cortex, putamen and left middle cingulate gyrus). We found negative associations between ΔWM and YKL40xAGE (bilateral superior longitudinal fasciculus) and sTREM2xAGE (bilateral superior longitudinal fasciculus, left superior corona radiata, retrolenticular external capsule and forceps minor, among other regions) but none between ΔWM and neither YKL40 nor sTREM2. ΔMD was positively correlated with YKL40 in right orbital region and negatively with sTREM2 in left lingual gyrus and precuneus. In addition, significant associations were found between ΔMD and YKL40xAGE (tail of left hippocampus and surrounding areas and right anterior cingulate gyrus) and sTREM2xAGE (right superior temporal gyrus). Areas showing statistically significant differences were disjoint in analyses involving YKL40 and sTREM2. These results suggest that glial biomarkers exert a relevant and distinct influence in longitudinal brain macro- and microstructural changes in cognitively unimpaired adults, which appears to be modulated by age. In younger subjects increased glial markers (both YKL40 and sTREM2) predict a better outcome, as indicated by a decrease in ΔGM and ΔWM and an increase in ΔMD, whereas in older subjects this association is inverted and higher levels of glial markers are associated with a poorer neuroimaging outcome.
Asunto(s)
Encéfalo/anatomía & histología , Proteína 1 Similar a Quitinasa-3/líquido cefalorraquídeo , Glicoproteínas de Membrana/líquido cefalorraquídeo , Anciano , Biomarcadores/líquido cefalorraquídeo , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Femenino , Sustancia Gris/anatomía & histología , Sustancia Gris/diagnóstico por imagen , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Receptores Inmunológicos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagenRESUMEN
Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001) of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001) and pallidum (p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05) and nucleus accumbens (p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does, however, provide evidence of basal ganglia volume increases.
RESUMEN
Alzheimer's disease (AD) is characterized by an accumulation of ß-amyloid (Aß42) accompanied by brain atrophy and cognitive decline. Several recent studies have shown that Aß42 accumulation is associated with gray matter (GM) changes prior to the development of cognitive impairment, in the so-called preclinical stage of the AD (pre-AD). It also has been proved that the GM atrophy profile is not linear, both in normal ageing but, especially, on AD. However, several other factors may influence this association and may have an impact on the generalization of results from different samples. In this work, we estimate differences in rates of GM volume change in cognitively healthy elders in association with baseline core cerebrospinal fluid (CSF) AD biomarkers, and assess to what these differences are sample dependent. We report the dependence of atrophy rates, measured in a two-year interval, on Aß42, computed both over continuous and categorical values of Aß42, at voxel-level (pâ¯<â¯0.001; kâ¯<â¯100) and corrected for sex, age and education. Analyses were performed jointly and separately, on two samples. The first sample was formed of 31 individuals (22 Ctrl and 9 pre-AD), aged 60-80 and recruited at the Hospital Clinic of Barcelona. The second sample was a replica of the first one with subjects selected from the ADNI dataset. We also investigated the dependence of the GM atrophy rate on the basal levels of continuous p-tau and on the p-tau/Aß42 ratio. Correlation analyses on the whole sample showed a dependence of GM atrophy rates on Aß42 in medial and orbital frontal, precuneus, cingulate, medial temporal regions and cerebellum. Correlations with p-tau were located in the left hippocampus, parahippocampus and striatal nuclei whereas correlation with p-tau/Aß42 was mainly found in ventral and medial temporal areas. Regarding analyses performed separately, we found a substantial discrepancy of results between samples, illustrating the complexities of comparing two independent datasets even when using the same inclusion criteria. Such discrepancies may lead to significant differences in the sample size needed to detect a particular reduction on cerebral atrophy rates in prevention trials. Higher cognitive reserve and more advanced pathological progression in the ADNI sample could partially account for the observed discrepancies. Taken together, our findings in these two samples highlight the importance of comparing and merging independent datasets to draw more robust and generalizable conclusions on the structural changes in the preclinical stages of AD.