Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 178(5): 1260-1272.e14, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442410

RESUMEN

Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas NLR/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Variación Genética , Genoma de Planta , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Inmunidad de la Planta , Especificidad de la Especie
2.
Cell ; 161(5): 957-960, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000473

RESUMEN

A mechanistic understanding of how plant pathogens modulate their hosts is critical for rationally engineered disease resistance in agricultural systems. Two new studies show that genomically paired plant immune receptors have incorporated decoy domains that structurally mimic pathogen virulence targets to monitor attempted host immunosuppression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas de Plantas/metabolismo
3.
Biochim Biophys Acta ; 1844(9): 1694-707, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24982030

RESUMEN

In Proteomics, gene/protein families including both specialized and non-specialized paralogs are an invaluable tool to study the evolution of structure/function relationships in proteins. Metallothioneins (MTs) of the pulmonate gastropod molluscs (snails) offer one of the best materials to study the metal-binding specificity of proteins, because they consist of a polymorphic system that includes members with extremely distinct metal preferences but with a high protein sequence similarity. Cantareus aspersus was the first snail where three paralogous MTs were isolated: the highly specific cadmium (CaCdMT) and copper (CaCuMT) isoforms, and an unspecific CaCd/CuMT isoform, so called because it was natively isolated as a mixed Cd and Cu complex. In this work, we have thoroughly analyzed the Zn(2+)-, Cd(2+)- and Cu(+)-binding abilities of these three CaMTs by means of the spectroscopic and spectrometric characterization of the respective recombinant, as well as in vitro-substituted, metal-complexes. The comparison with the orthologous HpMTs and the study of the isoform-determinant residues allow correlating the protein sequence variability with the coordination capabilities of these MTs. Surprisingly, the CaCuMT isoform exhibits a stronger Cu-thionein character than the HpCuMT ortholog, and the CaCd/CuMT isoform could be defined as a non-optimized Cu-thionein, which has not attained any defined functional differentiation in the framework of the snail MT gene/protein family.


Asunto(s)
Cadmio/química , Cobre/química , Caracoles Helix/química , Metalotioneína/química , Secuencia de Aminoácidos , Animales , Cationes Bivalentes , Cationes Monovalentes , Dicroismo Circular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Caracoles Helix/metabolismo , Ligandos , Metalotioneína/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Zinc/química
4.
Nat Cell Biol ; 25(12): 1833-1847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945904

RESUMEN

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.


Asunto(s)
Neoplasias de la Mama , Epigénesis Genética , Receptor alfa de Estrógeno , Amplificación de Genes , Proteínas Proto-Oncogénicas c-maf , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cromatina , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Proteínas Proto-Oncogénicas c-maf/genética
5.
Nat Metab ; 5(12): 2111-2130, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38097808

RESUMEN

Fibrogenesis is part of a normal protective response to tissue injury that can become irreversible and progressive, leading to fatal diseases. Senescent cells are a main driver of fibrotic diseases through their secretome, known as senescence-associated secretory phenotype (SASP). Here, we report that cellular senescence, and multiple types of fibrotic diseases in mice and humans are characterized by the accumulation of iron. We show that vascular and hemolytic injuries are efficient in triggering iron accumulation, which in turn can cause senescence and promote fibrosis. Notably, we find that senescent cells persistently accumulate iron, even when the surge of extracellular iron has subdued. Indeed, under normal conditions of extracellular iron, cells exposed to different types of senescence-inducing insults accumulate abundant ferritin-bound iron, mostly within lysosomes, and present high levels of labile iron, which fuels the generation of reactive oxygen species and the SASP. Finally, we demonstrate that detection of iron by magnetic resonance imaging might allow non-invasive assessment of fibrotic burden in the kidneys of mice and in patients with renal fibrosis. Our findings suggest that iron accumulation plays a central role in senescence and fibrosis, even when the initiating events may be independent of iron, and identify iron metabolism as a potential therapeutic target for senescence-associated diseases.


Asunto(s)
Senescencia Celular , Fenotipo Secretor Asociado a la Senescencia , Humanos , Hierro , Riñón , Fibrosis
6.
Mol Plant Microbe Interact ; 25(4): 557-68, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22122329

RESUMEN

We describe here the construction of a delivery system for stable and directed insertion of gene constructs in a permissive chromosomal site of the bacterial wilt pathogen Ralstonia solanacearum. The system consists of a collection of suicide vectors-the Ralstonia chromosome (pRC) series-that carry an integration element flanked by transcription terminators and two sequences of homology to the chromosome of strain GMI1000, where the integration element is inserted through a double recombination event. Unique restriction enzyme sites and a GATEWAY cassette enable cloning of any promoter::gene combination in the integration element. Variants endowed with different selectable antibiotic resistance genes and promoter::gene combinations are described. We show that the system can be readily used in GMI1000 and adapted to other R. solanacearum strains using an accessory plasmid. We prove that the pRC system can be employed to complement a deletion mutation with a single copy of the native gene, and to measure transcription of selected promoters in monocopy both in vitro and in planta. Finally, the system has been used to purify and study secretion type III effectors. These novel genetic tools will be particularly useful for the construction of recombinant bacteria that maintain inserted genes or reporter fusions in competitive situations (i.e., during plant infection).


Asunto(s)
Proteínas Bacterianas/metabolismo , Mutagénesis Insercional , Regiones Promotoras Genéticas/fisiología , Ralstonia solanacearum/patogenicidad , Proteínas Bacterianas/genética , Mapeo Cromosómico , Cromosomas Bacterianos , Clonación Molecular , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Prueba de Complementación Genética , Mutación , Ralstonia solanacearum/genética , Virulencia
7.
Microbiology (Reading) ; 158(Pt 8): 2107-2116, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22609750

RESUMEN

Although much is known about the signals that trigger transcription of virulence genes in plant pathogens, their prevalence and timing during infection are still unknown. In this work, we address these questions by analysing expression of the main pathogenicity determinants in the bacterial pathogen Ralstonia solanacearum. We set up a quantitative, non-invasive luminescent reporter to monitor in planta transcription from single promoters in the bacterial chromosome. We show that the new reporter provides a real-time measure of promoter output in vivo - either after re-isolation of pathogens from infected plants or directly in situ - and confirm that the promoter controlling exopolysaccharide (EPS) synthesis is active in bacteria growing in the xylem. We also provide evidence that hrpB, the master regulator of type III secretion system (T3SS) genes, is transcribed in symptomatic plants. Quantitative RT-PCR assays demonstrate that hrpB and type III effector transcripts are abundant at late stages of plant infection, suggesting that their function is required throughout disease. Our results challenge the widespread view in R. solanacearum pathogenicity that the T3SS, and thus injection of effector proteins, is only active to manipulate plant defences at the first stages of infection, and that its expression is turned down when bacteria reach high cell densities and EPS synthesis starts.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos , Rastreo Celular/métodos , Luciferasas/genética , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/metabolismo , Solanum lycopersicum/microbiología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Luciferasas/metabolismo , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Virulencia
8.
Biometals ; 24(6): 1079-92, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21625890

RESUMEN

Variable environmental availability of metal ions represents a constant challenge for most organisms, so that during evolution, they have optimised physiological and molecular mechanisms to cope with this particular requirement. Metallothioneins (MTs) are proteins that play a major role in metal homeostasis and as a reservoir. The MT gene/protein systems of terrestrial helicid snails are an invaluable model for the study of metal-binding features and MT isoform-specific functionality of these proteins. In the present study, we characterised three paralogous MT isogenes and their expressed products in the escargot (Cantareus aspersus). The metal-dependent transcriptional activation of the three isogenes was assessed using quantitative Real Time PCR. The metal-binding capacities of the three isoforms were studied by characterising the purified native complexes. All the data were analysed in relation to the trace element status of the animals after metal feeding. Two of the three C. aspersus MT (CaMT) isoforms appeared to be metal-specific, (CaCdMT and CaCuMT, for cadmium and copper respectively). A third isoform (CaCd/CuMT) was non-specific, since it was natively recovered as a mixed Cd/Cu complex. A specific role in Cd detoxification for CaCdMT was revealed, with a 80-90% contribution to the Cd balance in snails exposed to this metal. Conclusive data were also obtained for the CaCuMT isoform, which is involved in Cu homeostasis, sharing about 30-50% of the Cu balance of C. aspersus. No apparent metal-related physiological function was found for the third isoform (CaCd/CuMT), so its contribution to the metal balance of the escargot may be, if at all, of only marginal significance, but may enclose a major interest in evolutionary studies.


Asunto(s)
Cadmio/metabolismo , Cobre/metabolismo , Caracoles Helix/metabolismo , Metalotioneína/metabolismo , Isoformas de Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión/métodos , Caracoles Helix/anatomía & histología , Caracoles Helix/genética , Espectrometría de Masas/métodos , Metalotioneína/genética , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transcripción Genética
9.
Chemistry ; 16(41): 12363-72, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20839184

RESUMEN

It has previously been shown that recombinant synthesis, under metal-supplemented conditions, of diverse metallothioneins (MTs) results in the recovery of a subpopulation of S(2-)-containing complexes in addition to the S(2-)-devoid canonical metal-MT species. Further significance of this finding has remained veiled by the possibility of it being a mere consequence of synthesis in a heterologous bacterial system. Herein, we present definitive evidence that S(2-) ligands are also constituents of native metal-MT complexes. Because, although practically universal, the highest S(2-) content is incorporated by copper-thioneins when coordinating divalent metal ions, we adapted the Saccharomyces cerevisiae Cup1 protein, which is the most paradigmatic copper-thionein, as an experimental model. Most significantly, native Cd-Cup1 complexes were purified and fully spectroscopically and spectrometrically characterized from the 301N mutant yeast strain, which allows Cup1 synthesis even in the absence of copper. These results undoubtedly revealed the presence of a Cd-S(2-)-Cup1 species in native preparations, which were only recovered when carefully avoiding the use of ion-exchange chromatography in the purification protocol. Furthermore, complete analysis of recombinant (Escherichia coli) Zn-Cup1, Cd-Cup1, and Cu-Cup1 and those complexes that result from Zn/Cd and Zn/Cu replacements in vitro and acidification/renaturalization processes yielded a comprehensive and comparative overview of the metal-binding abilities of Cup1. Overall, we consider the main conclusions of this study to go beyond the mere study of the particular Cup1 MT, so that they should be considered to delineate a new point of view on the interaction between copper-thioneins and divalent metal ions, still an unexplored aspect in MT research.


Asunto(s)
Cobre/química , Metalotioneína/química , Sulfuros/química , Secuencia de Bases , Cadmio/análisis , Dicroismo Circular , Escherichia coli/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sulfuros/análisis , Zinc/análisis
10.
Science ; 365(6455): 799-803, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31439793

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors activate cell death and confer disease resistance by unknown mechanisms. We demonstrate that plant Toll/interleukin-1 receptor (TIR) domains of NLRs are enzymes capable of degrading nicotinamide adenine dinucleotide in its oxidized form (NAD+). Both cell death induction and NAD+ cleavage activity of plant TIR domains require known self-association interfaces and a putative catalytic glutamic acid that is conserved in both bacterial TIR NAD+-cleaving enzymes (NADases) and the mammalian SARM1 (sterile alpha and TIR motif containing 1) NADase. We identify a variant of cyclic adenosine diphosphate ribose as a biomarker of TIR enzymatic activity. TIR enzymatic activity is induced by pathogen recognition and functions upstream of the genes enhanced disease susceptibility 1 (EDS1) and N requirement gene 1 (NRG1), which encode regulators required for TIR immune function. Thus, plant TIR-NLR receptors require NADase function to transduce recognition of pathogens into a cell death response.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/inmunología , Dominio Catalítico , NAD+ Nucleosidasa/química , NAD/metabolismo , Receptores Inmunológicos/química , Sustitución de Aminoácidos , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Proteínas del Dominio Armadillo/química , Biomarcadores/análisis , Biomarcadores/metabolismo , Muerte Celular , Secuencia Conservada , ADP-Ribosa Cíclica/análisis , ADP-Ribosa Cíclica/metabolismo , Proteínas del Citoesqueleto/química , Proteínas de Unión al ADN/metabolismo , Ácido Glutámico/química , Ácido Glutámico/genética , Interacciones Huésped-Patógeno
11.
Annu Rev Phytopathol ; 56: 243-267, 2018 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-29949721

RESUMEN

Plants employ a diverse intracellular system of NLR (nucleotide binding-leucine-rich repeat) innate immune receptors to detect pathogens of all types. These receptors represent valuable agronomic traits that plant breeders rely on to maximize yield in the face of devastating pathogens. Despite their importance, the mechanistic underpinnings of NLR-based disease resistance remain obscure. The rapidly increasing numbers of plant genomes are revealing a diverse array of NLR-type immune receptors. In parallel, mechanistic studies are describing diverse functions for NLR immune receptors. In this review, we intend to broadly describe how the structural, functional, and genomic diversity of plant immune receptors can provide a valuable resource for rational engineering of plant immunity.


Asunto(s)
Proteínas NLR/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Plantas , Resistencia a la Enfermedad , Proteínas NLR/inmunología , Proteínas de Plantas/inmunología , Plantas/genética , Plantas/inmunología
12.
Nat Genet ; 50(1): 138-150, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255260

RESUMEN

Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe-microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering.


Asunto(s)
Adaptación Fisiológica , Bacterias/genética , Genoma Bacteriano , Genómica , Interacciones Huésped-Patógeno/genética , Plantas/microbiología , Bacterias/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA