Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur Heart J ; 31(11): 1410-20, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20023288

RESUMEN

AIMS: To evaluate the feasibility of loading resting monocytes/macrophages by intravenous (i.v.) injection of fluorescent iron oxide nanoparticles prior to injury and tracking of these cells in the very same animal to myocardial infarction (MI) by magnetic resonance imaging (MRI) and optical imaging. METHODS AND RESULTS: Rats were injected with fluorescent iron oxide nanoparticles (10 mg/kg) (n = 15) prior to injury. After disappearance of the nanoparticles from the blood, MI was induced. Monocytes/macrophages were then tracked in the very same animal by MRI and optical imaging. Control groups were (i) non-injected animals (n = 15), (ii) injected animals associated with a sham operation (n = 8), and (iii) animals treated with an anti-inflammatory agent (n = 6). The presence of iron-loaded cells can be detected by MRI in vivo in the infarcted myocardium. Here, we showed that the detection of inflammatory cells in vivo correlated well with ex vivo imaging (MRI and reflectance fluorescence) and histology. We also showed that the method is robust enough to depict changes in the inflammatory response. CONCLUSION: This study demonstrates that resting monocytes/macrophages can be loaded in vivo by a simple i.v. injection of fluorescent superparamagnetic iron oxide nanoparticles prior to injury and then tracked, in the same animal, in a model of ischaemia-reperfusion leading to myocardial infarct. Although previous studies of macrophages infiltration following MI have labelled the macrophages after injury, this study, for the first time, has pre-load the resting monocytes with fluorescent iron oxide nanoparticles.


Asunto(s)
Movimiento Celular/fisiología , Compuestos Férricos , Macrófagos/metabolismo , Nanopartículas del Metal , Monocitos/metabolismo , Infarto del Miocardio/diagnóstico , Animales , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Fluorescencia , Macrófagos/fisiología , Imagen por Resonancia Magnética , Monocitos/fisiología , Sistema Mononuclear Fagocítico , Daño por Reperfusión Miocárdica/diagnóstico , Ratas , Ratas Wistar
2.
J Cardiovasc Magn Reson ; 10: 48, 2008 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-18980685

RESUMEN

BACKGROUND: The purpose of this study was to measure regional contractile function in the normal rat using cardiac cine and tagged cardiovascular magnetic resonance (CMR) during incremental low doses of dobutamine and at rest. METHODS: Five rats were investigated for invasive left ventricle pressure measurements and five additional rats were imaged on a clinical 1.5 T MR system using a cine sequence (11-20 phases per cycle, 0.28/0.28/2 mm) and a C-SPAMM tag sequence (18-25 phases per cycle, 0.63/1.79/3 mm, tag spacing 1.25 mm). For each slice, wall thickening (WT) and circumferential strains (CS) were calculated at rest and at stress (2.5, 5 and 10 microg/min/kg of dobutamine). RESULTS: Good cine and tagged images were obtained in all the rats even at higher heart rate (300-440 bpm). Ejection fraction and left ventricular (LV) end-systolic volume showed significant changes after each dobutamine perfusion dose (p < 0.001). Tagged CMR had the capacity to resolve the CS transmural gradient and showed a significant increase of both WT and CS at stress compared to rest. Intra and interobserver study showed less variability for the tagged technique. In rats in which a LV catheter was placed, dobutamine produced a significant increase of heart rate, LV dP/dtmax and LV pressure significantly already at the lowest infusion dose. CONCLUSION: Robust cardiac cine and tagging CMR measurements can be obtained in the rat under incremental dobutamine stress using a clinical 1.5 T MR scanner.


Asunto(s)
Cardiotónicos/administración & dosificación , Dobutamina/administración & dosificación , Prueba de Esfuerzo , Imagen por Resonancia Cinemagnética , Contracción Miocárdica/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Variaciones Dependientes del Observador , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Volumen Sistólico/efectos de los fármacos , Presión Ventricular/efectos de los fármacos
3.
Invest Radiol ; 42(3): 204-10, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17287651

RESUMEN

The purpose of this study was to assess the feasibility of cardiac magnetic resonance (MR) tagging in rats on a standard clinical 1.5T MR system. Small animal models have been largely used as an experimental model in cardiovascular disease studies but mainly on high field systems (>4T) dedicated to research. Given the larger availability of routine clinical MR systems in centers with active cardiac research programs, it is of great interest to perform small animal imaging on whole-body MR systems of moderate field strength. The feasibility study was performed on 7 rats within 6 to 8 hours after myocardial infarction and 3 normal control rats. Myocardial strain was measured successfully in normal rats using the harmonic phase (ie, HARP) method, and a transmural gradient was demonstrated. In a rat model of acute occlusion/reperfusion, the myocardial circumferential strains were decreased, but the transmural strain gradient was preserved. This study demonstrated the feasibility of cardiac MR tagging in rats with a subendocardial resolution using a clinical 1.5T system.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Cinemagnética/instrumentación , Imagen por Resonancia Magnética/instrumentación , Infarto del Miocardio/diagnóstico , Miocardio/patología , Animales , Estudios de Factibilidad , Imagen por Resonancia Cinemagnética/métodos , Infarto del Miocardio/patología , Fantasmas de Imagen , Ratas , Ratas Sprague-Dawley
4.
J Med Chem ; 49(20): 6087-93, 2006 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17004722

RESUMEN

The binding of RGD peptides to integrins offers an excellent system to study the multivalent mediated changes in affinity that arise when peptides, displayed on the surface of a nanoparticle carrier, bind to integrins displayed on the cell membrane. The IC50 of an RGD nanoparticle for endothelial adhesion was 1.0 nM nanoparticle or 20 nM peptide (20 peptide/nanoparticle) and was associated with strong multivalent effects, defined as a multivalent enhancement factor (MVE) of 38 (MVE=IC50 (peptide)/IC50 (peptide when displayed by nanoparticle)). The attachment of RGD peptides to nanoparticles resulted in an extension of the peptide blood half-life from 13 to 180 min. Based on the multivalent enhancement of affinity and extension of blood half-life, multivalent RGD nanoparticle-sized materials should be potent inhibitors of the alpha(V)beta(3) function on endothelial cells in vivo.


Asunto(s)
Integrina alfaVbeta3/metabolismo , Oligopéptidos/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Semivida , Humanos , Técnicas In Vitro , Ratones , Ratones Desnudos , Nanoestructuras , Oligopéptidos/sangre , Oligopéptidos/química , Unión Proteica , Conformación Proteica
5.
Stem Cells Transl Med ; 1(3): 248-60, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23197784

RESUMEN

Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Corazón/fisiología , Infarto del Miocardio/terapia , Trasplante de Células Madre , Animales , Células Madre Embrionarias/fisiología , Técnicas para Inmunoenzimas , Imagen por Resonancia Magnética , Masculino , Ratones , Ratas
6.
Mol Imaging ; 6(1): 1-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17311760

RESUMEN

Transfection agent (TFA)-induced magnetic cell labeling with Feridex IV is an attractive method of loading cells because it employs a pharmaceutical source of iron oxide. Although attractive, the method has two significant drawbacks. First, it requires mixing positively charged transfection agents and negatively charged magnetic nanoparticles, and the resulting loss of nanoparticle surface charge causes nanoparticle precipitation. Second, it can result in nanoparticle adsorption to the cell surface rather than internalization. Internalization of Feridex (and associated dextran) is important since dextran cell exterior can react with the antidextran antibodies, commonly present in human populations, and trigger an antibody-mediated cytotoxicity. Here we employed three assays for selecting Feridex/TFA mixtures to minimize nanoparticle precipitation and surface adsorption: (1) an assay for precipitation or stability (light scattering), (2) an assay for labeled cells (percentage of cells retained by a magnetic filter), and (3) an antidextran-based assay for nanoparticle internalization. Cells loaded with Feridex/protamine had internalized iron, whereas cells loaded with Feridex/Lipofectamine had surface-adsorbed iron. Optimal conditions for loading cells were 10 microg/Feridex and 3 microg/mL protamine sulfate. Conditions for loading cells with Feridex and a TFA need to be carefully selected to minimize nanoparticle precipitation and dextran adsorption to the cell surface.


Asunto(s)
Células/metabolismo , Hierro/metabolismo , Nanopartículas del Metal , Óxidos/metabolismo , Protaminas/metabolismo , Animales , Transporte Biológico , Línea Celular , Dextranos , Óxido Ferrosoférrico , Hierro/química , Nanopartículas de Magnetita , Ratones , Óxidos/química , Permeabilidad , Polilisina/metabolismo , Polilisina/toxicidad , Transfección
7.
Neoplasia ; 8(3): 214-22, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16611415

RESUMEN

Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image alpha(V)beta3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the alpha(V)beta3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 microm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma/patología , Fluorometría/métodos , Gliosarcoma/patología , Integrina alfaVbeta3/análisis , Imagen por Resonancia Magnética/métodos , Nanoestructuras , Proteínas de Neoplasias/análisis , Animales , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/química , Carcinoma/irrigación sanguínea , Carcinoma/química , Línea Celular Tumoral/química , Línea Celular Tumoral/ultraestructura , Diagnóstico por Imagen/métodos , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Estudios de Factibilidad , Femenino , Colorantes Fluorescentes/análisis , Gliosarcoma/química , Semivida , Humanos , Nanoestructuras/análisis , Trasplante de Neoplasias , Oligopéptidos/análisis , Tamaño de la Partícula , Ratas , Distribución Tisular
8.
Mol Imaging ; 4(3): 165-71, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16194448

RESUMEN

Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent) assisted loading with the Feridex IV nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV and three internalization agents protamine (PRO), polylysine (PLL), and lipofectamine (LFA). Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 microg/mL Feridex and 3 microg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.


Asunto(s)
Transfección , Dextranos , Óxido Ferrosoférrico , Humanos , Hierro , Células Jurkat , Magnetismo , Nanopartículas de Magnetita , Óxidos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA