Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nucleic Acids Res ; 45(15): 9138-9148, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911097

RESUMEN

While most DNA polymerases discriminate against ribonucleotide triphosphate (rNTP) incorporation very effectively, the Family X member DNA polymerase µ (Pol µ) incorporates rNTPs almost as efficiently as deoxyribonucleotides. To gain insight into how this occurs, here we have used X-ray crystallography to describe the structures of pre- and post-catalytic complexes of Pol µ with a ribonucleotide bound at the active site. These structures reveal that Pol µ binds and incorporates a rNTP with normal active site geometry and no distortion of the DNA substrate or nucleotide. Moreover, a comparison of rNTP incorporation kinetics by wildtype and mutant Pol µ indicates that rNTP accommodation involves synergistic interactions with multiple active site residues not found in polymerases with greater discrimination. Together, the results are consistent with the hypothesis that rNTP incorporation by Pol µ is advantageous in gap-filling synthesis during DNA double strand break repair by nonhomologous end joining, particularly in nonreplicating cells containing very low deoxyribonucleotide concentrations.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Polimerasa Dirigida por ADN/química , ADN/química , Desoxirribonucleótidos/química , Ribonucleótidos/química , Secuencias de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleótidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleótidos/metabolismo , Especificidad por Sustrato , Termodinámica
2.
Nucleic Acids Res ; 44(8): 3946-57, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26969731

RESUMEN

Infection by Group A Streptococcus pyogenes (GAS) is a leading cause of severe invasive disease in humans, including streptococcal toxic shock syndrome and necrotizing fasciitis. GAS infections lead to nearly 163,000 annual deaths worldwide. Hypervirulent strains of S. pyogenes have evolved a plethora of virulence factors that aid in disease-by promoting bacterial adhesion to host cells, subsequent invasion of deeper tissues and blocking the immune system's attempts to eradicate the infection. Expression and secretion of the extracellular nuclease Sda1 is advantageous for promoting bacterial dissemination throughout the host organism, and evasion of the host's innate immune response. Here we present two crystal structures of Sda1, as well as biochemical studies to address key structural features and surface residues involved in DNA binding and catalysis. In the active site, Asn211 is observed to directly chelate a hydrated divalent metal ion and Arg124, on the putative substrate binding loop, likely stabilizes the transition state during phosphodiester bond cleavage. These structures provide a foundation for rational drug design of small molecule inhibitors to be used in prevention of invasive streptococcal disease.


Asunto(s)
Proteínas Bacterianas/química , Desoxirribonucleasa I/química , Factores de Virulencia/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/metabolismo , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Alineación de Secuencia , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(33): E4530-6, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240373

RESUMEN

Among the many proteins used to repair DNA double-strand breaks by nonhomologous end joining (NHEJ) are two related family X DNA polymerases, Pol λ and Pol µ. Which of these two polymerases is preferentially used for filling DNA gaps during NHEJ partly depends on sequence complementarity at the break, with Pol λ and Pol µ repairing complementary and noncomplementary ends, respectively. To better understand these substrate preferences, we present crystal structures of Pol µ on a 2-nt gapped DNA substrate, representing three steps of the catalytic cycle. In striking contrast to Pol λ, Pol µ "skips" the first available template nucleotide, instead using the template base at the 5' end of the gap to direct nucleotide binding and incorporation. This remarkable divergence from canonical 3'-end gap filling is consistent with data on end-joining substrate specificity in cells, and provides insights into polymerase substrate choices during NHEJ.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Catálisis , Cristalografía por Rayos X , Daño del ADN , ADN Polimerasa beta/química , Humanos , Cinética , Conformación de Ácido Nucleico , Nucleótidos/genética , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN , Especificidad por Sustrato
4.
Proc Natl Acad Sci U S A ; 109(14): 5265-70, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431632

RESUMEN

Heparin is a polysaccharide-based natural product that is used clinically as an anticoagulant drug. Heparan sulfate 3-O-sulfotransferase (3-OST) is an enzyme that transfers a sulfo group to the 3-OH position of a glucosamine unit. 3-OST is present in multiple isoforms, and the polysaccharides modified by these different isoforms perform distinct biological functions. 3-OST isoform 1 (3-OST-1) is the key enzyme for the biosynthesis of anticoagulant heparin. Here, we report the crystal structure of the ternary complex of 3-OST-1, 3'-phosphoadenosine 5'-phosphate, and a heptasaccharide substrate. Comparisons to previously determined structures of 3-OST-3 reveal unique binding modes used by the different isoforms of 3-OST for distinguishing the fine structures of saccharide substrates. Our data demonstrate that the saccharide substrates display distinct conformations when interacting with the different 3-OST isoforms. Site-directed mutagenesis data suggest that several key amino residues, including Lys259, Thr256, and Trp283 in 3-OST-3 and Arg268 in 3-OST-1, play important roles in substrate binding and specificity between isoforms. These results deepen our understanding of the biosynthetic mechanism of heparan sulfate and provide structural information for engineering enzymes for an enhanced biosynthetic approach to heparin production.


Asunto(s)
Anticoagulantes/metabolismo , Heparina/biosíntesis , Sulfotransferasas/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Sulfotransferasas/química
5.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2937-49, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372684

RESUMEN

The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.


Asunto(s)
Proteínas Bacterianas/química , Endonucleasas/química , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/química , Factores de Virulencia/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Endonucleasas/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Conformación Proteica , Alineación de Secuencia , Streptococcus agalactiae/enzimología , Streptococcus agalactiae/genética , Factores de Virulencia/genética
6.
Nucleic Acids Res ; 40(15): 7518-27, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22584622

RESUMEN

Although most DNA polymerases discriminate against ribonucleotide triphosphaets (rNTPs) during DNA synthesis, recent studies have shown that large numbers of ribonucleotides are incorporated into the eukaryotic nuclear genome. Here, we investigate how a DNA polymerase can stably incorporate an rNTP. The X-ray crystal structure of a variant of human DNA polymerase λ reveals that the rNTP occupies the nucleotide binding pocket without distortion of the active site, despite an unfavorable interaction between the 2'-O and Tyr505 backbone carbonyl. This indicates an energetically unstable binding state for the rNTP, stabilized by additional protein-nucleotide interactions. Supporting this idea is the 200-fold lower catalytic efficiency for rNTP relative to deoxyribonucleotide triphosphate (dNTP) incorporation, reflecting a higher apparent Km value for the rNTP. Furthermore, distortion observed in the structure of the post-catalytic product complex suggests that once the bond between the α- and ß-phosphates of the rNTP is broken, the unfavorable binding state of the ribonucleotide cannot be maintained. Finally, structural and biochemical evaluation of dNTP insertion onto an ribonucleotide monophosphate (rNMP)-terminated primer indicates that a primer-terminal rNMP does not impede extension. The results are relevant to how ribonucleotides are incorporated into DNA in vivo, during replication and during repair, perhaps especially in non-proliferating cells when rNTP:dNTP ratios are high.


Asunto(s)
ADN Polimerasa beta/química , Ribonucleótidos/química , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa beta/metabolismo , Humanos , Cinética , Modelos Moleculares , Ribonucleótidos/metabolismo
7.
J Allergy Clin Immunol ; 132(6): 1420-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23915714

RESUMEN

BACKGROUND: Sensitization to cockroach allergens is a major risk factor for asthma. The cockroach allergen Bla g 1 has multiple repeats of approximately 100 amino acids, but the fold of the protein and its biological function are unknown. OBJECTIVE: We sought to determine the structure of Bla g 1, investigate the implications for allergic disease, and standardize cockroach exposure assays. METHODS: nBla g 1 and recombinant constructs were compared by using ELISA with specific murine IgG and human IgE. The structure of Bla g 1 was determined by x-ray crystallography. Mass spectrometry and nuclear magnetic resonance spectroscopy were used to examine the ligand-binding properties of the allergen. RESULTS: The structure of an rBla g 1 construct with comparable IgE and IgG reactivity to the natural allergen was solved by x-ray crystallography. The Bla g 1 repeat forms a novel fold with 6 helices. Two repeats encapsulate a large and nearly spherical hydrophobic cavity, defining the basic structural unit. Lipids in the cavity varied depending on the allergen origin. Palmitic, oleic, and stearic acids were associated with nBla g 1 from cockroach frass. One unit of Bla g 1 was equivalent to 104 ng of allergen. CONCLUSIONS: Bla g 1 has a novel fold with a capacity to bind various lipids, which suggests a digestive function associated with nonspecific transport of lipid molecules in cockroaches. Defining the basic structural unit of Bla g 1 facilitates the standardization of assays in absolute units for the assessment of environmental allergen exposure.


Asunto(s)
Alérgenos/metabolismo , Asma/diagnóstico , Asma/inmunología , Inmunoglobulina E/metabolismo , Alérgenos/genética , Alérgenos/inmunología , Secuencia de Aminoácidos , Animales , Cucarachas , Cristalografía por Rayos X , Digestión/genética , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Inmunoglobulina E/inmunología , Lípidos/inmunología , Espectroscopía de Resonancia Magnética , Ratones , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Transgenes/genética
8.
Nucleic Acids Res ; 39(7): 2943-53, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21113026

RESUMEN

EndA is a sequence non-specific endonuclease that serves as a virulence factor during Streptococcus pneumoniae infection. Expression of EndA provides a strategy for evasion of the host's neutrophil extracellular traps, digesting the DNA scaffold structure and allowing further invasion by S. pneumoniae. To define mechanisms of catalysis and substrate binding, we solved the structure of EndA at 1.75 Å resolution. The EndA structure reveals a DRGH (Asp-Arg-Gly-His) motif-containing ßßα-metal finger catalytic core augmented by an interesting 'finger-loop' interruption of the active site α-helix. Subsequently, we delineated DNA binding versus catalytic functionality using structure-based alanine substitution mutagenesis. Three mutants, H154A, Q186A and Q192A, exhibited decreased nuclease activity that appears to be independent of substrate binding. Glu205 was found to be crucial for catalysis, while residues Arg127/Lys128 and Arg209/Lys210 contribute to substrate binding. The results presented here provide the molecular foundation for development of specific antibiotic inhibitors for EndA.


Asunto(s)
Proteínas Bacterianas/química , Endodesoxirribonucleasas/química , Proteínas de la Membrana/química , Streptococcus pneumoniae/enzimología , Alanina/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Cationes Bivalentes/química , ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Imidazoles/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Unión Proteica
9.
Nucleic Acids Res ; 39(2): 623-34, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20846957

RESUMEN

EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identify His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.


Asunto(s)
Proteínas Bacterianas/química , Endodesoxirribonucleasas/química , Proteínas de la Membrana/química , Streptococcus pneumoniae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Biosíntesis de Proteínas , Dispersión del Ángulo Pequeño , Transcripción Genética , Difracción de Rayos X
10.
Nat Struct Mol Biol ; 14(1): 45-53, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17159995

RESUMEN

DNA polymerase mu (Pol mu) is a family X enzyme with unique substrate specificity that contributes to its specialized role in nonhomologous DNA end joining (NHEJ). To investigate Pol mu's unusual substrate specificity, we describe the 2.4 A crystal structure of the polymerase domain of murine Pol mu bound to gapped DNA with a correct dNTP at the active site. This structure reveals substrate interactions with side chains in Pol mu that differ from other family X members. For example, a single amino acid substitution, H329A, has little effect on template-dependent synthesis by Pol mu from a paired primer terminus, but it reduces both template-independent and template-dependent synthesis during NHEJ of intermediates whose 3' ends lack complementary template strand nucleotides. These results provide insight into the substrate specificity and differing functions of four closely related mammalian family X DNA polymerases.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Didesoxinucleótidos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato , Nucleótidos de Timina/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-22684055

RESUMEN

The role of ADAM-8 in cancer and inflammatory diseases such as allergy, arthritis and asthma makes it an attractive target for drug development. Therefore, the catalytic domain of human ADAM-8 was expressed, purified and crystallized in complex with a hydroxamic acid inhibitor, batimastat. The crystal structure of the enzyme-inhibitor complex was refined to 2.1 Å resolution. ADAM-8 has an overall fold similar to those of other ADAM members, including a central five-stranded ß-sheet and a catalytic Zn(2+) ion. However, unique differences within the S1' binding loop of ADAM-8 are observed which might be exploited to confer specificity and selectivity to ADAM-8 competitive inhibitors for the treatment of diseases involving this enzyme.


Asunto(s)
Proteínas ADAM/química , Dominio Catalítico , Proteínas de la Membrana/química , Fenilalanina/análogos & derivados , Inhibidores de Proteasas/química , Tiofenos/química , Proteínas ADAM/metabolismo , Humanos , Ligandos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fenilalanina/química , Fenilalanina/metabolismo , Inhibidores de Proteasas/metabolismo , Unión Proteica , Desplegamiento Proteico , Tiofenos/metabolismo
12.
Nat Chem Biol ; 4(3): 200-2, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18223645

RESUMEN

The biosynthesis of heparan sulfate (HS) involves an array of specialized sulfotransferases. Here, we present a study aimed at engineering the substrate specificity of different HS 3-O-sulfotransferase isoforms. Based on the crystal structures, we identified a pair of amino acid residues responsible for selecting the substrates. Mutations of these residues altered the substrate specificities. Our results demonstrate the feasibility of tailoring the specificity of sulfotransferases to modify HS with desired functions.


Asunto(s)
Heparitina Sulfato/biosíntesis , Ingeniería de Proteínas , Isoformas de Proteínas/metabolismo , Sulfotransferasas/metabolismo , Sitios de Unión , Conformación de Carbohidratos , Estudios de Factibilidad , Heparitina Sulfato/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Especificidad por Sustrato , Sulfotransferasas/química , Sulfotransferasas/genética
13.
DNA Repair (Amst) ; 7(8): 1340-51, 2008 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-18585102

RESUMEN

Three of the four family X polymerases, DNA polymerase lambda, DNA polymerase mu, and TdT, have been associated with repair of double-strand DNA breaks by nonhomologous end-joining. Their involvement in this DNA repair process requires an N-terminal BRCT domain that mediates interaction with other protein factors required for recognition and binding of broken DNA ends. Here we present the NMR solution structure of the BRCT domain of DNA polymerase lambda, completing the structural portrait for this family of enzymes. Analysis of the overall fold of the polymerase lambda BRCT domain reveals structural similarity to the BRCT domains of polymerase mu and TdT, yet highlights some key sequence and structural differences that may account for important differences in the biological activities of these enzymes and their roles in nonhomologous end-joining. Mutagenesis studies indicate that the conserved Arg57 residue of Pol lambda plays a more critical role for binding to the XRCC4-Ligase IV complex than its structural homolog in Pol mu, Arg43. In contrast, the hydrophobic Leu60 residue of Pol lambda contributes less significantly to binding than the structurally homologous Phe46 residue of Pol mu. A third leucine residue involved in the binding and activity of Pol mu, is nonconservatively replaced by a glutamine in Pol lambda (Gln64) and, based on binding and activity data, is apparently unimportant for Pol lambda interactions with the NHEJ complex. In conclusion, both the structure of the Pol lambda BRCT domain and its mode of interaction with the other components of the NHEJ complex significantly differ from the two previously studied homologs, Pol mu and TdT.


Asunto(s)
ADN Polimerasa beta/metabolismo , Recombinación Genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN Polimerasa beta/química , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
14.
DNA Repair (Amst) ; 6(12): 1709-25, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17631059

RESUMEN

The mammalian family X DNA polymerases (DNA polymerases beta, lambda, mu, and TdT) contribute to base excision repair and double-strand break repair by virtue of their ability to fill short gaps in DNA. Structural information now exists for all four of these enzymes, making this the first mammalian polymerase family whose structural portrait is complete. Here we consider how distinctive structural features of these enzymes contribute to their biological functions in vivo.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/fisiología , Secuencia de Aminoácidos , Animales , Catálisis , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
15.
Mol Cell Biol ; 38(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29437838

RESUMEN

Glucocorticoid receptor ß (GRß) is associated with glucocorticoid resistance via dominant negative regulation of GRα. To better understand how GRß functions as a dominant negative inhibitor of GRα at a molecular level, we determined the crystal structure of the ligand binding domain of GRß complexed with the antagonist RU-486. The structure reveals that GRß binds RU-486 in the same ligand binding pocket as GRα, and the unique C-terminal amino acids of GRß are mostly disordered. Binding energy analysis suggests that these C-terminal residues of GRß do not contribute to RU-486 binding. Intriguingly, the GRß/RU-486 complex binds corepressor peptide with affinity similar to that of a GRα/RU-486 complex, despite the lack of helix 12. Our biophysical and biochemical analyses reveal that in the presence of RU-486, GRß is found in a conformation that favors corepressor binding, potentially antagonizing GRα function. This study thus presents an unexpected molecular mechanism by which GRß could repress transcription.


Asunto(s)
Receptores de Glucocorticoides/metabolismo , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Glucocorticoides/metabolismo , Humanos
16.
ACS Chem Biol ; 12(1): 73-82, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28103688

RESUMEN

Heparan sulfate (HS) is a sulfated polysaccharide exhibiting essential physiological functions. HS 6-O-sulfotransferase (6-OST) transfers a sulfo group to the 6-OH position of glucosamine units to confer a variety of HS biological activities. There are three different isoforms of 6-OST in the human genome. Here, we report crystal structures of the ternary complex of 6-OST with the sulfo donor analog 3'-phosphoadenosine 5'-phosphate and three different oligosaccharide substrates at 1.95 to 2.1 Å resolutions. Structural and mutational analyses reveal amino acid residues that contribute to catalysis and substrate recognition of 6-OST. Unexpectedly, the structures reveal 6-OST engages HS in a completely different orientation than other HS sulfotransferases and sheds light on the basic HS requirements for specificity. These findings also contribute structural information to understand mutations in human 6-OST isoform 1 associated with the human genetic disease idiopathic hypogonadotropic hypogonadism characterized by incomplete or lack of puberty.


Asunto(s)
Adenosina Difosfato/metabolismo , Oligosacáridos/metabolismo , Sulfotransferasas/metabolismo , Adenosina Difosfato/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Oligosacáridos/química , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Sulfotransferasas/química , Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
17.
Nat Commun ; 8(1): 253, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811466

RESUMEN

DNA polymerase (pol) µ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol µ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PPi. The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol µ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) µ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/genética , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , Cinética , Modelos Moleculares , Nucleótidos/metabolismo
18.
Nat Struct Mol Biol ; 21(3): 253-60, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24487959

RESUMEN

DNA polymerase µ (Pol µ) is the only template-dependent human DNA polymerase capable of repairing double-strand DNA breaks (DSBs) with unpaired 3' ends in nonhomologous end joining (NHEJ). To probe this function, we structurally characterized Pol µ's catalytic cycle for single-nucleotide incorporation. These structures indicate that, unlike other template-dependent DNA polymerases, Pol µ shows no large-scale conformational changes in protein subdomains, amino acid side chains or DNA upon dNTP binding or catalysis. Instead, the only major conformational change is seen earlier in the catalytic cycle, when the flexible loop 1 region repositions upon DNA binding. Pol µ variants with changes in loop 1 have altered catalytic properties and are partially defective in NHEJ. The results indicate that specific loop 1 residues contribute to Pol µ's unique ability to catalyze template-dependent NHEJ of DSBs with unpaired 3' ends.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , Catálisis , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/genética , Electrones , Humanos , Cinética , Modelos Moleculares , Mutación , Nucleótidos/química , Unión Proteica , Especificidad por Sustrato
19.
J Biomol Screen ; 18(3): 247-57, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23015019

RESUMEN

The human commensal pathogen Streptococcus pneumoniae expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both. Virulence factors also present possible points of therapeutic intervention. The activities of the surface endonuclease, EndA, allow S. pneumoniae to establish invasive pneumococcal infection. EndA's role in DNA uptake during transformation contributes to gene transfer and genetic diversification. Moreover, EndA's nuclease activity degrades the DNA backbone of neutrophil extracellular traps (NETs), allowing pneumococcus to escape host immune responses. Given its potential impact on pneumococcal pathogenicity, EndA is an attractive target for novel antimicrobial therapy. Herein, we describe the development of a high-throughput screening assay for the discovery of nuclease inhibitors. Nuclease-mediated digestion of double-stranded DNA was assessed using fluorescence changes of the DNA dye ligand, PicoGreen. Under optimized conditions, the assay provided robust and reproducible activity data (Z'= 0.87) and was used to screen 4727 small molecules against an imidazole-rescued variant of EndA. In total, six small molecules were confirmed as novel EndA inhibitors, some of which may have utility as research tools for understanding pneumococcal pathogenesis and for drug discovery.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Endodesoxirribonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas de la Membrana/antagonistas & inhibidores , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/enzimología , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Inhibidores Enzimáticos/farmacología , Fluorescencia , Proteínas de la Membrana/metabolismo , Nucleasa Microcócica/antagonistas & inhibidores , Nucleasa Microcócica/metabolismo , Compuestos Orgánicos/química , Reproducibilidad de los Resultados , Streptococcus pneumoniae/metabolismo , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/metabolismo
20.
Curr Opin Struct Biol ; 22(5): 550-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22840348

RESUMEN

Heparan sulfates (HSs) have potential therapeutic value as anti-inflammatory and antimetastasis drugs, in addition to their current use as anticoagulants. Recent advances in chemoenzymatic synthesis of HS provide a way to conveniently produce homogenous HS with different biological properties. Crystal structures of sulfotransferases involved in this process are providing atomic detail of their substrate binding clefts and interactions with their HS substrates. In theory, the flexibility of this method can be increased by modifying the specificities of the sulfotransferases based on the structures, thereby producing a new array of products.


Asunto(s)
Sulfotransferasas/biosíntesis , Sulfotransferasas/química , Animales , Cristalografía , Humanos , Especificidad por Sustrato , Sulfotransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA