Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Stroke Cerebrovasc Dis ; 33(1): 107483, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976794

RESUMEN

AIM: In this study, we investigated the effects of Dendropanax morbifera extract (DME) on neuroprotection against ischemic damage in gerbils. METHODS: DME (100 or 300 mg/kg) was orally administered to gerbils for three weeks, and 2 h after the last DME treatment, transient forebrain ischemia in the common carotid arteries was induced for 5 min. The forebrain ischemia-related cognitive impairments were assessed by spontaneous motor activity and passive avoidance test one and four days after ischemia, respectively. In addition, surviving and degenerating neurons were morphologically confirmed by neuronal nuclei immunohistochemical staining and Fluoro-Jade C staining, respectively, four days after ischemia. Changes of glial morphology were visualized by immunohistochemical staining for each marker such as glial fibrillary acidic protein and ionized calcium-binding protein. Oxidative stress was determined by measurements of dihydroethidium, O2· (formation of formazan) and malondialdehyde two days after ischemia. In addition, glutathione redox system such as reduced glutathione, oxidized glutathione levels, glutathione peroxidase, and glutathione reductase activities were measured two days after ischemia. RESULTS: Spontaneous motor activity monitoring and passive avoidance tests showed that treatment with 300 mg/kg DME, but not 100 mg/kg, significantly alleviated ischemia-induced memory impairments. In addition, approximately 67 % of mature neurons survived and 29.3 % neurons were degenerated in hippocampal CA1 region four days after ischemia, and ischemia-induced morphological changes in astrocytes and microglia were decreased in the CA1 region after 300 mg/kg DME treatment. Furthermore, treatment with 300 mg/kg DME significantly ameliorated ischemia-induced oxidative stress, such as superoxide formation and lipid peroxidation, two days after ischemia. In addition, ischemia-induced reduction of the glutathione redox system in the hippocampus, assessed two days after the ischemia, was ameliorated by treatment with 300 mg/kg DME. These suggest that DME can potentially reduce ischemia-induced neuronal damage through its antioxidant properties.


Asunto(s)
Isquemia Encefálica , Ataque Isquémico Transitorio , Humanos , Animales , Gerbillinae/metabolismo , Ataque Isquémico Transitorio/metabolismo , Hipocampo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Glutatión/metabolismo , Infarto Cerebral
2.
Neurochem Res ; 48(12): 3585-3596, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37561257

RESUMEN

CCT2 is a eukaryotic chaperonin TCP-1 ring complex subunit that mediates protein folding, autophagosome incorporation, and protein aggregation. In this study, we investigated the effects of CCT on oxidative and ischemic damage using in vitro and in vivo experimental models. The Tat-CCT2 fusion protein was efficiently delivered into HT22 cells in a concentration- and time-dependent manner, and the delivered protein was gradually degraded in HT22 cells. Incubation with Tat-CCT2 significantly ameliorated the 200 µM hydrogen peroxide (H2O2)-induced reduction in cell viability in a concentration-dependent manner, and 8 µM Tat-CCT2 treatment significantly alleviated H2O2-induced DNA fragmentation and reactive oxygen species formation in HT22 cells. In gerbils, CCT2 protein was efficiently delivered into pyramidal cells in CA1 region by intraperitoneally injecting 0.5 mg/kg Tat-CCT2, as opposed to control CCT2. In addition, treatment with 0.2 or 0.5 mg/kg Tat-CCT2 mitigated ischemia-induced hyperlocomotive activity 1 d after ischemia and confirmed the neuroprotective effects by NeuN immunohistochemistry in the hippocampal CA1 region 4 d after ischemia. Tat-CCT2 treatment significantly reduced the ischemia-induced activation of astrocytes and microglia in the hippocampal CA1 region 4 d after ischemia. Furthermore, treatment with 0.2 or 0.5 mg/kg Tat-CCT2 facilitated ischemia-induced autophagic activity and ameliorated ischemia-induced autophagic initiation in the hippocampus 1 d after ischemia based on western blotting for LC3B and Beclin-1, respectively. Levels of p62, an autophagic substrate, significantly increased in the hippocampus following treatment with Tat-CCT2. These results suggested that Tat-CCT2 exerts neuroprotective effects against oxidative stress and ischemic damage by promoting the autophagic removal of damaged proteins or organelles.


Asunto(s)
Fármacos Neuroprotectores , Animales , Gerbillinae/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Hipocampo/metabolismo , Isquemia/metabolismo , Productos del Gen tat , Neuronas/metabolismo
3.
Neurochem Res ; 46(12): 3123-3134, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34403064

RESUMEN

p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1ß and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.


Asunto(s)
Productos del Gen tat/administración & dosificación , Inflamación/inmunología , Enfermedad de la Neurona Motora/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Isquemia de la Médula Espinal/complicaciones , alfa-Sinucleína/antagonistas & inhibidores , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Peroxidación de Lípido , Masculino , Enfermedad de la Neurona Motora/etiología , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Conejos , Especies Reactivas de Oxígeno/metabolismo
4.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050051

RESUMEN

Phosphoglycerate mutase 1 (PGAM1) is a glycolytic enzyme that increases glycolytic flux in the brain. In the present study, we examined the effects of PGAM1 in conditions of oxidative stress and ischemic damage in motor neuron-like (NSC34) cells and the rabbit spinal cord. A Tat-PGAM1 fusion protein was prepared to allow easy crossing of the blood-brain barrier, and Control-PGAM1 was synthesized without the Tat peptide protein transduction domain. Intracellular delivery of Tat-PGAM1, not Control-PGAM1, was achieved in a time- and concentration-dependent manner. Immunofluorescent staining confirmed the intracellular expression of Tat-PGAM1 in NSC34 cells. Tat-PGAM1, but not Control-PGAM1, significantly alleviated H2O2-induced oxidative stress, neuronal death, mitogen-activated protein kinase, and apoptosis-inducing factor expression in NSC34 cells. After ischemia induction in the spinal cord, Tat-PGAM1 treatment significantly improved ischemia-induced neurological impairments and ameliorated neuronal cell death in the ventral horn of the spinal cord 72 h after ischemia. Tat-PGAM1 treatment significantly mitigated the ischemia-induced increase in malondialdehyde and 8-iso-prostaglandin F2α production in the spinal cord. In addition, Tat-PGAM1, but not Control-PGAM1, significantly decreased microglial activation and secretion of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α induced by ischemia in the ventral horn of the spinal cord. These results suggest that Tat-PGAM1 can be used as a therapeutic agent to reduce spinal cord ischemia-induced neuronal damage by lowering the oxidative stress, microglial activation, and secretion of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α.


Asunto(s)
Muerte Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Neuronas Motoras/metabolismo , Mielitis/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Fosfoglicerato Mutasa/administración & dosificación , Isquemia de la Médula Espinal/tratamiento farmacológico , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Híbridas , Peróxido de Hidrógeno/farmacología , Masculino , Ratones , Neuronas Motoras/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Conejos , Transducción de Señal/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química
5.
Neurochem Res ; 41(12): 3300-3307, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27743287

RESUMEN

In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2 × 105) were administered intrathecally. In addition, PEP-1 or 0.5 mg/kg PEP-1-SOD1 was administered intraperitoneally to the Ad-MSC-treated rabbits. Motor behaviors and NeuN-immunoreactive neurons were significantly decreased in the vehicle-treated group after ischemia/reperfusion. Administration of Ad-MSCs significantly ameliorated the changes in motor behavior and NeuN-immunoreactive neuronal survival. In addition, the combination of PEP-1-SOD1 and Ad-MSCs further increased the ameliorative effects of Ad-MSCs in the spinal cord after ischemia. Furthermore, the administration of Ad-MSCs with PEP-1-SOD1 decreased lipid peroxidation and maintained levels of antioxidants such as SOD1 and glutathione peroxidase compared to the Ad-MSC alone group. These results suggest that combination therapy using Ad-MSCs and PEP-1-SOD1 strongly protects neurons from ischemic damage by modulating the balance of lipid peroxidation and antioxidants.


Asunto(s)
Tejido Adiposo/citología , Antioxidantes/metabolismo , Cisteamina/análogos & derivados , Isquemia/terapia , Trasplante de Células Madre Mesenquimatosas , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Médula Espinal/irrigación sanguínea , Superóxido Dismutasa-1/metabolismo , Animales , Cisteamina/metabolismo , Glutatión Peroxidasa/metabolismo , Humanos , Isquemia/enzimología , Isquemia/psicología , Peroxidación de Lípido , Masculino , Células Madre Mesenquimatosas/metabolismo , Actividad Motora , Péptidos/genética , Conejos , Proteínas Recombinantes de Fusión/genética , Superóxido Dismutasa-1/genética
6.
Neurochem Res ; 40(5): 1063-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25894680

RESUMEN

In the present study, we investigated the effects of pioglitazone (PGZ) in the hippocampal CA1 region of low- or high-fat diet (LFD or HFD) fed gerbils after transient forebrain ischemia. After 8 weeks of LFD or HFD feeding, PGZ (30 mg/kg) was intraperitoneally administered to the gerbils, following which ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. Administration of PGZ significantly reduced the ischemia-induced hyperactivity 1 day after ischemia/reperfusion in both LFD- and HFD-fed gerbils. At 4 days after ischemia/reperfusion, the neurons were significantly reduced and microglial activation was observed in the hippocampal CA1 region in LFD- and HFD-fed gerbils. The microglial activation was more prominent in the HFD-fed gerbils compared to the LFD-fed gerbils. Administration of PGZ ameliorated ischemia-induced neuronal death and microglial activation in the hippocampal CA1 region 4 days after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-gerbils. At 6 h after ischemia/reperfusion, tumor necrosis factor-α (TNF-α) and interlukin-1ß (IL-1ß) levels were significantly increased in the hippocampal homogenates of LFD-fed group compared to control group, and HFD feeding further increased TNF-α and IL-1ß levels. PGZ treatment significantly ameliorated the increase of TNF-α and IL-1ß levels in LFD-fed gerbils, not in the HFD-fed gerbils. At 12 h after ischemia/reperfusion, superoxide dismutase (SOD) and malondialdehyde (MDA) levels in hippocampal homogenates were significantly increased in the LFD-fed group compared to the control group, and HFD feeding significantly showed relatively reduction in SOD activity and increase in MDA level. PGZ administration significantly reduced the increase in MDA levels 12 h after ischemia/reperfusion in the LFD-fed gerbils, but not in the HFD-fed gerbils. These results suggest that PGZ ameliorates the neuronal damage induced by ischemia by maintaining the TNF-α, IL-1ß, SOD and MDA levels in LFD-fed gerbils. In addition, HFD feeding affects the modulation of these parameters in the hippocampus after transient forebrain ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Dieta con Restricción de Grasas , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Tiazolidinedionas/uso terapéutico , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Dieta con Restricción de Grasas/tendencias , Dieta Alta en Grasa/tendencias , Gerbillinae , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Pioglitazona , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patología , Tiazolidinedionas/farmacología
7.
BMC Complement Altern Med ; 15: 247, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26201852

RESUMEN

BACKGROUND: Dendropanax morbifera Léveille has been employed for the treatment of infectious diseases using folk medicine. In this study, we evaluated the antioxidant effects of a leaf extract of Dendropanax morbifera Léveille in the hippocampus of mercury-exposed rats. METHODS: Seven-week-old Sprague-Dawley rats received a daily intraperitoneal injection of 5 µg/kg dimethylmercury and/or oral Dendropanax morbifera Léveille leaf extract (100 mg/kg) for 4 weeks. Animals were sacrificed 2 h after the last dimethylmercury and/or leaf extract treatment. Mercury levels were measured in homogenates of hippocampal tissue, a brain region that is vulnerable to mercury toxicity. In addition, we measured reactive oxygen species production, lipid peroxidation levels, and antioxidant levels in these hippocampal homogenates. RESULTS: Treatment with Dendropanax morbifera Léveille leaf extract significantly reduced mercury levels in hippocampal homogenates and attenuated the dimethylmercury-induced increase in the production of reactive oxygen species and formation of malondialdehyde. In addition, this leaf extract treatment significantly reversed the dimethylmercury-induced reduction in the hippocampal activities of Cu, Zn-superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase. CONCLUSION: These results suggest that a leaf extract of Dendropanax morbifera Léveille had strong antioxidant effects in the hippocampus of mercury-exposed rats.


Asunto(s)
Antioxidantes/administración & dosificación , Araliaceae/química , Hipocampo/efectos de los fármacos , Mercurio/toxicidad , Extractos Vegetales/administración & dosificación , Animales , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Hipocampo/enzimología , Hipocampo/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Hojas de la Planta/química , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
8.
J Spinal Cord Med ; 38(4): 538-43, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24793647

RESUMEN

OBJECTIVE: To investigate the effect compound C, an adenosine monophosphate-activated kinase (AMPK) inhibitor, has on motor neurons of rabbit spinal cord after ischemia/reperfusion. DESIGN: Compound C (30 mg/kg) was administered intraperitoneally to rabbits 30 minutes before ischemia and the animals were sacrificed at 15 minutes after ischemia/reperfusion to measure lactate levels and at 72 hours after ischemia/reperfusion for morphological study. RESULTS: The administration of compound C did not produce any significant changes in physiological parameters such as pH, arterial blood gas (PaCO(2) and PaO(2)), and blood glucose in rabbit either at 10 minutes before ischemia or at 10 minutes after reperfusion. However, the administration of compound C did significantly ameliorate lactate acidosis at 15 minutes after reperfusion. In addition, the administration of compound C significantly improved the neurological scores of the rabbits and reduced the neuronal death seen in the ventral horn of their spinal cords at 72 hours after ischemia/reperfusion. CONCLUSIONS: Inhibition of AMPK can ameliorate the ischemia-induced neuronal death in the spinal cord via the reduction of early lactate acidosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Isquemia de la Médula Espinal/metabolismo , Asta Ventral de la Médula Espinal/efectos de los fármacos , Animales , Glucemia/metabolismo , Ácido Láctico/sangre , Masculino , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Conejos , Isquemia de la Médula Espinal/tratamiento farmacológico , Asta Ventral de la Médula Espinal/metabolismo
9.
Neurochem Res ; 39(1): 187-93, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24293249

RESUMEN

The DJ-1 gene is highly conserved in diverse species and DJ-1 is known as an anti-oxidative stress factor. In this study, we investigated the neuroprotective effects of DJ-1 against ischemic damage in the rabbit spinal cord. Tat-DJ-1 fusion proteins were constructed to facilitate the penetration of DJ-1 protein into the neurons. Tat-1-DJ-1 fusion protein was administered to the rabbit 30 min after ischemia/reperfusion, and transient spinal cord ischemia was induced by occlusion of the aorta at the subrenal region for 15 min. The administration of Tat-DJ-1 significantly improved the Tarlov score compared to that in the Tat (vehicle)-treated group at 24, 48 and 72 h after ischemia/reperfusion. At 72 h after ischemia/reperfusion, the number of cresyl violet-positive neurons was significantly increased in the Tat-DJ-1-treated group compared to that in the vehicle-treated group. Lipid peroxidation as judged from the malondialdehyde levels was significantly decreased in the Tat-DJ-1-treated group compared to that in the vehicle-treated group. In contrast, superoxide dismutase and catalase levels were significantly increased in the Tat-DJ-1-treated group compared to that in the vehicle-treated group. This result suggests that DJ-1 protects neurons from ischemic damage in the ventral horn of the spinal cord via its antioxidant effects.


Asunto(s)
Proteínas Oncogénicas/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Isquemia de la Médula Espinal/prevención & control , Animales , Antioxidantes/farmacología , Catalasa/biosíntesis , Miembro Posterior/fisiología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Conejos , Daño por Reperfusión/fisiopatología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Superóxido Dismutasa/biosíntesis
10.
BMC Complement Altern Med ; 14: 428, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25362479

RESUMEN

BACKGROUND: Dendropanax morbifera Léveille is used in herbal medicine as a cancer treatment. In this study, we investigated the effects of Dendropanax morbifera stem extract (DMS) on cadmium (Cd) excretion from the blood and kidney and brain tissues of rats exposed to cadmium, as well as the effects of DMS on oxidative stress and antioxidant levels in the hippocampus after Cd exposure. METHODS: Seven-week-old Sprague-Dawley rats were exposed to 2 mg/kg of cadmium by intragastric gavage and were orally administered 100 mg/kg of DMS for 4 weeks. Animals were sacrificed and Cd determination was performed using inductively coupled plasma mass spectrometry. In addition, the effects of Cd and/or DMS on oxidative stress were assayed by measuring reactive oxygen species production, protein carbonyl modification, lipid peroxidation levels, and antioxidant levels in hippocampal homogenates. RESULTS: Exposure to Cd significantly increased Cd content in the blood, kidneys, and hippocampi. DMS treatment significantly reduced Cd content in the blood and kidneys, but not in the hippocampi. Exposure to Cd significantly increased reactive oxygen species production, protein carbonyl modification, lipid peroxidation, total sulfhydryl content, reduced glutathione content, and glutathione reductase activity. In contrast, Cu, Zn-superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activity in the hippocampus were significantly decreased after exposure to Cd, and administration of DMS significantly inhibited these Cd-induced changes. CONCLUSION: These results indicate that DMS facilitates cadmium excretion from the kidneys, reduces cadmium-induced oxidative stress in the hippocampus, and modulates SOD1, CAT, GPx, and glutathione-S-transferase activities.


Asunto(s)
Antioxidantes/metabolismo , Araliaceae/química , Cadmio/metabolismo , Hipocampo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Cadmio/toxicidad , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hipocampo/enzimología , Hipocampo/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Tallos de la Planta/química , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
11.
Cell Mol Neurobiol ; 33(5): 615-24, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23605681

RESUMEN

Aging is an inevitable process that occurs in the whole body system accompanying with many functional and morphological changes. Inflammation is known as one of age-related factors, and inflammatory changes could enhance mortality risk. In this study, we compared immunoreactivities of inflammatory cytokines, such as interleukin (IL)-2 (a pro-inflammatory cytokine), its receptor (IL-2R), IL-4 (an anti-inflammatory cytokine), and its receptor (IL-4R) in the cervical and lumbar spinal cord of young adult (2-3 years old) and aged (10-12 years old) beagle dogs using immunohistochemistry and western blotting. IL-2 and IL-2R-immunoreactive nerve cells were found throughout the gray matter of the cervical and lumbar spinal cord of young adult and aged dogs. In the spinal cord neurons of the aged dog, immunoreactivity and protein levels were apparently increased compared with those in the young adult dog. Change patterns of IL-4- and IL-4R-immunoreactive cells and their protein levels were also similar to those in IL-2 and IL-2R; however, IL-4 and IL-4R immunoreactivity in the periphery of the neuronal cytoplasm in the aged dog was much stronger than that in the young adult dog. These results indicate that the increase of inflammatory cytokines and their receptors in the aged spinal cord might be related to maintaining a balance of inflammatory reaction in the spinal cord during normal aging.


Asunto(s)
Envejecimiento/patología , Inflamación/patología , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Médula Espinal/patología , Animales , Western Blotting , Perros , Inmunohistoquímica , Receptores de Interleucina-2/metabolismo , Receptores de Interleucina-4/metabolismo , Médula Espinal/metabolismo
12.
Neurochem Int ; 167: 105552, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37230197

RESUMEN

Purpurin, an anthraquinone, has potent anti-oxidant and anti-inflammatory effects in various types of brain damage. In a previous study, we showed that purpurin exerts neuroprotective effects against oxidative and ischemic damage by reducing pro-inflammatory cytokines. In the present study, we investigated the effects of purpurin against D-galactose-induced aging phenotypes in mice. Exposure to 100 mM D-galactose significantly decreased cell viability in HT22 cells, and purpurin treatment significantly ameliorated the reduction of cell viability, formation of reactive oxygen species, and lipid peroxidation in a concentration-dependent manner. Treatment with 6 mg/kg purpurin significantly improved D-galactose-induced memory impairment in the Morris water maze test in C57BL/6 mice and alleviated the reduction of proliferating cells and neuroblasts in the subgranular zone of the dentate gyrus. In addition, purpurin treatment significantly mitigated D-galactose-induced changes of microglial morphology in the mouse hippocampus and the release of pro-inflammatory cytokines such as interleukin-1ß, interleukin-6, and tumor necrosis factor-α. In addition, purpurin treatment significantly ameliorated D-galactose-induced phosphorylation of c-Jun N-terminal kinase and cleavage of caspase-3 in HT22 cells. These results suggest that purpurin can delay aging by reducing the inflammatory cascade and phosphorylation of the c-Jun N-terminal in the hippocampus.


Asunto(s)
Envejecimiento , Galactosa , Ratones , Animales , Galactosa/toxicidad , Ratones Endogámicos C57BL , Envejecimiento/patología , Antraquinonas/farmacología , Hipocampo , Citocinas , Estrés Oxidativo
13.
Sci Rep ; 13(1): 5653, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024665

RESUMEN

Malate dehydrogenase (MDH) plays an important role in the conversion of malate to oxaloacetate during the tricarboxylic acid cycle. In this study, we examined the role of cytoplasmic MDH (MDH1) in hydrogen peroxide (H2O2)-induced oxidative stress in HT22 cells and ischemia-induced neuronal damage in the gerbil hippocampus. The Tat-MDH1 fusion protein was constructed to enable the delivery of MDH1 into the intracellular space and penetration of the blood-brain barrier. Tat-MDH1, but not MDH1 control protein, showed significant cellular delivery in HT22 cells in a concentration- and time-dependent manner and gradual intracellular degradation in HT22 cells. Treatment with 4 µM Tat-MDH1 significantly ameliorated 200 µM H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation in HT22 cells. Transient increases in MDH1 immunoreactivity were detected in the hippocampal CA1 region 6-12 h after ischemia, but MDH1 activity significantly decreased 2 days after ischemia. Supplementation of Tat-MDH1 immediately after ischemia alleviated ischemia-induced hyperlocomotion and neuronal damage 1 and 4 days after ischemia. In addition, treatment with Tat-MDH1 significantly ameliorated the increases in hydroperoxides, lipid peroxidation, and reactive oxygen species 2 days after ischemia. Tat-MDH1 treatment maintained the redox status of the glutathione system in the hippocampus 2 days after ischemia. These results suggest that Tat-MDH1 exerts neuroprotective effects by reducing oxidative stress and maintaining glutathione redox system in the hippocampus.


Asunto(s)
Productos del Gen tat , Isquemia , Malato Deshidrogenasa , Fármacos Neuroprotectores , Estrés Oxidativo , Animales , Productos del Gen tat/farmacología , Gerbillinae , Hipocampo/metabolismo , Peróxido de Hidrógeno/metabolismo , Isquemia/tratamiento farmacológico , Malato Deshidrogenasa/farmacología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Ratones
14.
Neurospine ; 20(4): 1272-1280, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38171294

RESUMEN

OBJECTIVE: Although adult spinal deformity (ASD) surgery aims to restore and maintain alignment, proximal junctional kyphosis (PJK) may occur. While existing scoring systems predict PJK, they predominantly offer a generalized 3-tier risk classification, limiting their utility for nuanced treatment decisions. This study seeks to establish a personalized risk calculator for PJK, aiming to enhance treatment planning precision. METHODS: Patient data for ASD were sourced from the Korean spinal deformity database. PJK was defined a proximal junctional angle (PJA) of ≥ 20° at the final follow-up, or an increase in PJA of ≥ 10° compared to the preoperative values. Multivariable analysis was performed to identify independent variables. Subsequently, 5 machine learning models were created to predict individualized PJK risk post-ASD surgery. The most efficacious model was deployed as an online and interactive calculator. RESULTS: From a pool of 201 patients, 49 (24.4%) exhibited PJK during the follow-up period. Through multivariable analysis, postoperative PJA, body mass index, and deformity type emerged as independent predictors for PJK. When testing machine learning models using study results and previously reported variables as hyperparameters, the random forest model exhibited the highest accuracy, reaching 83%, with an area under the receiver operating characteristics curve of 0.76. This model has been launched as a freely accessible tool at: (https://snuspine.shinyapps.io/PJKafterASD/). CONCLUSION: An online calculator, founded on the random forest model, has been developed to gauge the risk of PJK following ASD surgery. This may be a useful clinical tool for surgeons, allowing them to better predict PJK probabilities and refine subsequent therapeutic strategies.

15.
Neurochem Res ; 37(2): 307-13, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21964799

RESUMEN

A rabbit model of spinal cord ischemia has been introduced as a good model to investigate the pathophysiology of ischemia-reperfusion (I-R)-induced paraplegia. In the present study, we observed the effects of Cu,Zn-superoxide dismutase (SOD1) against ischemic damage in the ventral horn of L(5-6) levels in the rabbit spinal cord. For this study, the expression vector PEP-1 was constructed, and this vector was fused with SOD1 to create a PEP-1-SOD1 fusion protein that easily penetrated the blood-brain barrier. Spinal cord ischemia was induced by transient occlusion of the abdominal aorta for 15 min. PEP-1-SOD1 (0.5 mg/kg) was intraperitoneally administered to rabbits 30 min before ischemic surgery. The administration of PEP-1-SOD1 significantly improved neurological scores compared to those in the PEP-1 (vehicle)-treated ischemia group. Also, in this group, the number of cresyl violet-positive cells at 72 h after I-R was much higher than that in the vehicle-treated ischemia group. Malondialdehyde levels were significantly decreased in the ischemic spinal cord of the PEP-1-SOD1-treated ischemia group compared to those in the vehicle-treated ischemia group. In contrast, the administration of PEP-1-SOD1 significantly ameliorated the ischemia-induced reduction of SOD and catalase levels in the ischemic spinal cord. These results suggest that PEP-1-SOD1 protects neurons from spinal ischemic damage by decreasing lipid peroxidation and maintaining SOD and catalase levels in the ischemic rabbit spinal cord.


Asunto(s)
Isquemia/patología , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Médula Espinal/patología , Superóxido Dismutasa/metabolismo , Animales , Secuencia de Bases , Barrera Hematoencefálica , Cartilla de ADN , Isquemia/enzimología , Peroxidación de Lípido , Masculino , Malondialdehído/metabolismo , Neuronas/enzimología , Conejos , Médula Espinal/irrigación sanguínea
16.
Neurochem Res ; 37(3): 480-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22037840

RESUMEN

The activation of caspase-3 is considered to be a reliable marker for apoptotic cell death, and a 120-kDa fragment of αII-spectrin is generated by caspase-3 mediated cleavage of this structural protein. In the present study, we compared cleaved αII-spectrin (120-kDa) and cleaved caspase-3-immunoreactive cells and their protein levels in the cervical (C5-C6) and lumbar (L3-L4) levels of the spinal cord in adult (1-2 year-old) and aged (10-12 year-old) dogs (German shepherds). Weak cleaved αII-spectrin and cleaved caspase-3 immunoreactivity was found in neurons of the adult group; however, their immunoreactivity was distinctively increased in the neuronal cytoplasm in the aged group compared to those in the adult group, although the distribution pattern of their neurons was similar between the adult and age group. In addition, cleaved αII-spectrin and cleaved caspase-3 levels in the aged spinal cord were markedly increased compared to those in the adult group. These findings suggest that the increases of cleaved αII-spectrin and cleaved caspase-3 immunoreactivity may be related to aging of the spinal cord in dogs.


Asunto(s)
Envejecimiento/metabolismo , Caspasa 3/metabolismo , Espectrina/metabolismo , Médula Espinal/enzimología , Animales , Western Blotting , Perros , Inmunohistoquímica , Proteolisis
17.
Neurochem Int ; 157: 105346, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35513204

RESUMEN

Phosphoglycerate mutase 5 (PGAM5), a glycolytic enzyme, plays an important role in cell death and regulation of mitochondrial dynamics. In this study, we investigated the effects of PGAM5 on oxidative stress in HT22 hippocampal cells and ischemic damage in the gerbil hippocampus to elucidate the role of PGAM5 in oxidative and ischemic stress. Constructs were designed with a PEP-1 expression vector to facilitate the intracellular delivery of PGAM5 proteins. We observed time- and concentration-dependent increases in the intracellular delivery of the PEP-1-PGAM5 protein, but not its control protein (PGAM5), in HT22 cells, and morphologically demonstrated the localization of the transduced protein, which was stably expressed in the cytoplasm after 12 h of PEP-1-PGAM5 treatment. PEP-1-PGAM5 treatment significantly ameliorated cell death, reactive oxygen species formation, DNA fragmentation, and the reduction of cell proliferation induced by H2O2 treatment in HT22 cells. In addition, PEP-1-PGAM5 was effectively delivered to the gerbil hippocampus 8 h after treatment, and ischemia-induced hyperlocomotion and neuronal death in the hippocampal CA1 region were significantly alleviated 1 and 4 days after ischemia, respectively. Ischemia-induced microglial activation was also mitigated by treatment with 1.0 mg/kg PEP-1-PGAM5. At 3 h after ischemia, PEP-1-PGAM5 treatment significantly ameliorated the increase in lipid peroxidation, as assessed by malondialdehyde and hydroperoxide levels, and decreased glutathione levels (increases in glutathione disulfide, the oxidized form of glutathione) in the hippocampus. Two days after ischemia, treatment with PEP-1-PGAM5 significantly alleviated the ischemia-induced reduction in glutathione peroxidase activity and further increased superoxide dismutase activity in the hippocampus. The neuroprotective effects of PEP-1-PGAM5 are partially mediated by a reduction in oxidative stress, such as the formation of reactive oxygen species, and increases in the activity of antioxidants such as glutathione peroxidase and superoxide dismutase.


Asunto(s)
Fármacos Neuroprotectores , Animales , Antioxidantes/farmacología , Gerbillinae/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa , Hipocampo/metabolismo , Peróxido de Hidrógeno/farmacología , Isquemia/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Fosfoglicerato Mutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
18.
Cells ; 10(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572372

RESUMEN

The present study explored the effects of endophilin A1 (SH3GL2) against oxidative damage brought about by H2O2 in HT22 cells and ischemic damage induced upon transient forebrain ischemia in gerbils. Tat-SH3GL2 and its control protein (Control-SH3GL2) were synthesized to deliver it to the cells by penetrating the cell membrane and blood-brain barrier. Tat-SH3GL2, but not Control-SH3GL2, could be delivered into HT22 cells in a concentration- and time-dependent manner and the hippocampus 8 h after treatment in gerbils. Tat-SH3GL2 was stably present in HT22 cells and degraded with time, by 36 h post treatment. Pre-incubation with Tat-SH3GL2, but not Control-SH3GL2, significantly ameliorated H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation. SH3GL2 immunoreactivity was decreased in the gerbil hippocampal CA1 region with time after ischemia, but it was maintained in the other regions after ischemia. Tat-SH3GL2 treatment in gerbils appreciably improved ischemia-induced hyperactivity 1 day after ischemia and the percentage of NeuN-immunoreactive surviving cells increased 4 days after ischemia. In addition, Tat-SH3GL2 treatment in gerbils alleviated the increase in lipid peroxidation as assessed by the levels of malondialdehyde and 8-iso-prostaglandin F2α and in pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6; while the reduction of protein levels in markers for synaptic plasticity, such as postsynaptic density 95, synaptophysin, and synaptosome associated protein 25 after transient forebrain ischemia was also observed. These results suggest that Tat-SH3GL2 protects neurons from oxidative and ischemic damage by reducing lipid peroxidation and inflammation and improving synaptic plasticity after ischemia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Hipocampo/patología , Peroxidación de Lípido , Plasticidad Neuronal , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/farmacología , Animales , Isquemia Encefálica/fisiopatología , Muerte Celular/efectos de los fármacos , Línea Celular , Productos del Gen tat/metabolismo , Gerbillinae , Hipocampo/fisiopatología , Peróxido de Hidrógeno/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Factores de Tiempo
19.
Neurochem Res ; 35(4): 620-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20012688

RESUMEN

Microglia are main form of active immune defense, and they are constantly moving and analyzing the CNS for damaged neurons and infectious agents. In this study, we compared microglia in the spinal cord of the young adult (1-2 years old) and aged (10-12 years old) German Shepherd dogs via immunohistochemistry and western blot analysis for ionized calcium-binding adapter molecule 1 (Iba-1), a microglial marker. In addition, we also observed the interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, and interleukin-1beta (IL-1beta), produced by activated microglia/macrophage, protein levels in these groups. At first, we found that neuronal nuclei (NeuN, a neuronal marker)-immunoreactive neurons were distributed throughout the grey mate of the spinal cord, and there were no significant differences between the adult and aged groups. Most of Iba-1-immunoreactive microglia were morphologically ramified microglia (resting form) in the adult group, while some Iba-1-immunoreactive microglia were morphologically activated microglia in the aged group. In western blot analysis, Iba-1, IFN-gamma and IL-1beta expression were increased in the aged group. This result may be associated with age-dependent changes in the spinal cord.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Unión al ADN/metabolismo , Microglía/metabolismo , Médula Espinal/metabolismo , Animales , Western Blotting , Perros , Inmunohistoquímica , Interferón gamma/metabolismo , Interleucina-1beta/metabolismo , Masculino
20.
Brain Behav ; 10(3): e01534, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31957985

RESUMEN

INTRODUCTION: We examined the effects of exogenous protein disulfide isomerase A3 (PDIA3) on hippocampal neurogenesis in gerbils under control and ischemic damage. METHODS: To facilitate the delivery of PDIA3 to the brain, we constructed Tat-PDIA3 protein and administered vehicle (10% glycerol) or Tat-PDIA3 protein once a day for 28 days. On day 24 of vehicle or Tat-PDIA3 treatment, ischemia was transiently induced by occlusion of both common carotid arteries for 5 min. RESULTS: Administration of Tat-PDIA3 significantly reduced ischemia-induced spontaneous motor activity, and the number of NeuN-positive nuclei in the Tat-PDIA3-treated ischemic group was significantly increased in the CA1 region compared to that in the vehicle-treated ischemic group. Ki67- and DCX-immunoreactive cells were significantly higher in the Tat-PDIA3-treated group compared to the vehicle-treated control group. In vehicle- and Tat-PDIA3-treated ischemic groups, the number of Ki67- and DCX-immunoreactive cells was significantly higher as compared to those in the vehicle- and Tat-PDIA3-treated control groups, respectively. In the dentate gyrus, the numbers of Ki67-immunoreactive cells were comparable between vehicle- and Tat-PDIA3-treated ischemic groups, while more DCX-immunoreactive cells were observed in the Tat-PDIA3-treated group. Transient forebrain ischemia increased the expression of phosphorylated cAMP-response element-binding protein (pCREB) in the dentate gyrus, but the administration of Tat-PDIA3 robustly increased pCREB-positive nuclei in the normal gerbils, but not in the ischemic gerbils. Brain-derived neurotrophic factor (BDNF) mRNA expression was significantly increased in the Tat-PDIA3-treated group compared to that in the vehicle-treated group. Transient forebrain ischemic increased BDNF mRNA levels in both vehicle- and Tat-PDIA3-treated groups, and there were no significant differences between groups. CONCLUSIONS: These results suggest that Tat-PDIA3 enhances cell proliferation and neuroblast numbers in the dentate gyrus in normal, but not in ischemic gerbils, by increasing BDNF mRNA and phosphorylation of pCREB.


Asunto(s)
Isquemia Encefálica/patología , Proliferación Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Proteína Disulfuro Isomerasas/farmacología , Animales , Recuento de Células , Gerbillinae , Masculino , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA