Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421233

RESUMEN

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Asunto(s)
Citrus , Xanthomonas , Efectores Tipo Activadores de la Transcripción/genética , Efectores Tipo Activadores de la Transcripción/metabolismo , Citrus/genética , Citrus/microbiología , Xanthomonas/genética , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Mol Plant Microbe Interact ; 31(2): 200-211, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29148926

RESUMEN

The 22-amino acid (flg22) pathogen-associated molecular pattern from the flagellin of Xanthomonas citri subsp. citri has been shown to induce defense responses correlated with citrus canker resistance. Here, flg22 of 'Candidatus Liberibacter asiaticus', the putative causal agent of Huanglongbing (HLB), elicited differential defense responses that were weaker than those from Xcc-flg22, between those of the HLB-tolerant mandarin cultivar Sun Chu Sha and susceptible grapefruit cultivar Duncan. Transcriptomics was used to compare the effect of CLas-flg22 and Xcc-flg22 between the citrus genotypes and identified 86 genes induced only by CLas-flg22 in the tolerant mandarin. Expression of 16 selected genes was validated, by reverse transcription-quantitative polymerase chain reaction, and was evaluated in citrus during 'Ca. L. asiaticus' infection. Differential expression of a number of genes occurred between tolerant and susceptible citrus infected with 'Ca. L. asiaticus', suggesting their involvement in HLB tolerance. In addition, several genes were similarly regulated by CLas-flg22 and 'Ca. L. asiaticus' treatments, while others were oppositely regulated in the tolerant mandarin, suggesting similarity and interplay between CLas-flg22 and 'Ca. L. asiaticus'-triggered defenses. Genes identified are valuable in furthering the study of HLB tolerance mechanisms and, potentially, for screening for HLB-tolerant citrus using CLas-flg22 as a pathogen proxy.


Asunto(s)
Citrus/microbiología , Flagelina/inmunología , Predisposición Genética a la Enfermedad , Bacterias Gramnegativas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Bacterias Gramnegativas/inmunología , Especies Reactivas de Oxígeno
3.
BMC Plant Biol ; 17(1): 146, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28854897

RESUMEN

BACKGROUND: In citrus the transition from juvenility to mature phase is marked by the capability of a tree to flower and fruit consistently. The long period of juvenility in citrus severely impedes the use of genetic based strategies to improve fruit quality, disease resistance, and responses to abiotic environmental factors. One of the genes whose expression signals flower development in many plant species is FLOWERING LOCUS T (FT). RESULTS: In this study, gene expression levels of flowering genes CiFT1, CiFT2 and CiFT3 were determined using reverse-transcription quantitative real-time PCR in citrus trees over a 1 year period in Florida. Distinct genotypes of citrus trees of different ages were used. In mature trees of pummelo (Citrus grandis Osbeck) and 'Pineapple' sweet orange (Citrus sinensis (L.) Osbeck) the expression of all three CiFT genes was coordinated and significantly higher in April, after flowering was over, regardless of whether they were in the greenhouse or in the field. Interestingly, immature 'Pineapple' seedlings showed significantly high levels of CiFT3 expression in April and June, while CiFT1 and CiFT2 were highest in June, and hence their expression induction was not simultaneous as in mature plants. CONCLUSIONS: In mature citrus trees the induction of CiFTs expression in leaves occurs at the end of spring and after flowering has taken place suggesting it is not associated with dormancy interruption and further flower bud development but is probably involved with shoot apex differentiation and flower bud determination. CiFTs were also seasonally induced in immature seedlings, indicating that additional factors must be suppressing flowering induction and their expression has other functions.


Asunto(s)
Citrus sinensis/genética , Citrus/genética , Flores/genética , Genes de Plantas , Perfilación de la Expresión Génica , Hojas de la Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Biomacromolecules ; 16(4): 1276-82, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25756603

RESUMEN

We report the synthesis and characterization of pH-responsive polysuccinimide-based nanoparticles. Polysuccinimide (PSI), a precursor to biodegradable poly(aspartic acid), was synthesized from the condensation of l-aspartic acid and subsequently functionalized with primary amines to form random amphiphilic copolymers. The copolymers formed stable nanoparticles in aqueous medium via nanoprecipitation and were subsequently loaded with a model hydrophobic molecule to demonstrate their potential as controlled-release delivery vehicles. It was found that above pH 7, the hydrophobic succinimidyl units of the PSI nanoparticles hydrolyzed to release encapsulated materials. The release rate significantly increased at elevated pH and decreased with an increasing degree of functionalization. Finally, plant toxicity studies showed that the polymer materials exhibit little to no toxic effects at biologically relevant concentrations.


Asunto(s)
Ácido Aspártico/análogos & derivados , Plásticos Biodegradables/metabolismo , Citrus/efectos de los fármacos , Nanopartículas/química , Péptidos/metabolismo , Agricultura/métodos , Ácido Aspártico/síntesis química , Ácido Aspártico/metabolismo , Ácido Aspártico/toxicidad , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/toxicidad , Citrus/metabolismo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/síntesis química , Péptidos/química , Péptidos/toxicidad , Semillas/efectos de los fármacos , Semillas/metabolismo
6.
Mol Plant Microbe Interact ; 25(11): 1396-407, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22809274

RESUMEN

Although there are no known sources of genetic resistance, some Citrus spp. are reportedly tolerant to huanglongbing (HLB), presumably caused by 'Candidatus Liberibacter asiaticus'. Time-course transcriptional analysis of tolerant rough lemon (Citrus jambhiri) and susceptible sweet orange (C. sinensis) in response to 'Ca. L. asiaticus' infection showed more genes differentially expressed in HLB-affected rough lemon than sweet orange at early stages but substantially fewer at late time points, possibly a critical factor underlying differences in sensitivity to 'Ca. L. asiaticus'. Pathway analysis revealed that stress responses were distinctively modulated in rough lemon and sweet orange. Although microscopic changes (e.g., callose deposition in sieve elements and phloem cell collapse) were found in both infected species, remarkably, phloem transport activity in midribs of source leaves in rough lemon was much less affected by HLB than in sweet orange. The difference in phloem cell transport activities is also implicated in the differential sensitivity to HLB between the two species. The results potentially lead to identification of key genes and the genetic mechanism in rough lemon to restrain disease development and maintain (or recover) phloem transport activity. These potential candidate genes may be used for improving citrus tolerance (or even resistance) to HLB by genetic engineering.


Asunto(s)
Citrus/anatomía & histología , Citrus/microbiología , Rhizobiaceae/fisiología , Citrus/genética
7.
Mol Biol Rep ; 39(2): 895-902, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21594623

RESUMEN

In the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato. Expression analysis revealed fluctuations in CpPSY, CpPDS, and CpZDS transcript abundance and a non-coordinated regulation between the former and the two latter genes during fruit development in albedo and juice vesicles of white ('Duncan') and red ('Flame') grapefruits. A 3× higher upregulation of CpPSY expression in juice vesicles of red-fleshed 'Flame' as compared to white-fruited 'Duncan' was observed in the middle stages of fruit development, which correlates with the well documented accumulation pattern of lycopene in red grapefruit. Together with previous data, our results suggest that the primary mechanism controlling lycopene accumulation in red grapefruit involves the transcriptional upregulation of CpPSY, which controls the flux into the carotenoid pathway, and the downregulated expression of CpLCYB2, which controls the step of cyclization of lycopene in chromoplasts during fruit ripening. A correlation between CpPSY expression and fruit color evolution in red grapefruit is demonstrated.


Asunto(s)
Vías Biosintéticas/genética , Carotenoides/biosíntesis , Citrus paradisi/enzimología , Enzimas/genética , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Biología Computacional , Cartilla de ADN/genética , Componentes del Gen/genética , Perfilación de la Expresión Génica , Licopeno , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN
8.
BMC Plant Biol ; 11: 159, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22078099

RESUMEN

BACKGROUND: Citrus canker disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc) has become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative Fortunella margarita Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in Fortunella and citrus at the molecular level. RESULTS: cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus. CONCLUSION: Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.


Asunto(s)
Enfermedades de las Plantas/genética , Rutaceae/genética , Transcriptoma , Xanthomonas/patogenicidad , Análisis por Conglomerados , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiología , Rutaceae/microbiología
9.
Physiol Plant ; 141(1): 1-10, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20875059

RESUMEN

Two new lycopene ß-cyclases (LCYBs) were cloned and characterized from grapefruit (Citrus paradisi Macf.). During fruit ripening, CpLCYB1 expression did not show significant differences between 'Flame' (red flesh) and 'Marsh' (white flesh), and was much lower than CpLCYB2 and nearly constant; however, CpLCYB2 expression dramatically changed in a similar tendency in the pulp of both grapefruit cultivars, but the relative abundance of mRNA in 'Flame' was significantly lower than in 'Marsh'. Phylogenetically and structurally, CpLCYB1 was a chloroplast-specific member and CpLCYB2 a chromoplast-specific member, the two subfamilies of all the LCYB genes. An intron was found in the 5'-untranslated region of CpLCYB1 and in two other Citrus LCYB1 genes (CcLCYB1 and CsLCYB1-2), resulting in an extra 20 amino acids, compared with all the other LCYB1s. It suggested that a different genomic event, in addition to gene duplication, has contributed to the evolution of these LCYB genes, and likewise, the change of their functions.


Asunto(s)
Citrus paradisi/enzimología , Citrus paradisi/genética , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/genética , Filogenia , Secuencia de Bases , ADN Complementario/genética , Perfilación de la Expresión Génica , Genes de Plantas/genética , Liasas Intramoleculares/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Alineación de Secuencia
10.
Physiol Plant ; 137(2): 101-14, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656329

RESUMEN

Citrus species accumulate large quantities of flavanone glycosides in their leaves and fruit. The physiological role(s) of these compounds in citrus plants are unknown, but they have been documented to benefit human health upon consumption. Flavanone rutinosides are tasteless, whereas flavanone neohesperidosides, such as naringin, give a bitter taste to fruit and fruit juice products, reducing their palatability. In an effort to alter the types and levels of flavanone neohesperidosides in citrus, an Agrobacterium-mediated genetic transformation approach was employed. Citrus paradisi Macf. (grapefruit) epicotyl stem segments were transformed with sense (S) and antisense (AS) constructs of the target genes chalcone synthase (CHS) and chalcone isomerase (CHI), whose products catalyze the first two steps in the flavonoid biosynthetic pathway. Transformation with each of the individual constructs led to a different and unpredictable combination of viability, phenotypic change, transgene steady-state expression and alteration in flavonoid content in the resulting transgenic plants. These qualities were consistent within the transgenic plants obtained using any particular construct. Transgenic plants with decreased leaf naringin levels were obtained, particularly when the CHS-AS constructs were employed.


Asunto(s)
Aciltransferasas/genética , Citrus paradisi/genética , Flavanonas/biosíntesis , Frutas/química , Liasas Intramoleculares/genética , Cromatografía Líquida de Alta Presión , Citrus paradisi/química , ADN de Plantas/genética , Frutas/genética , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Rhizobium/genética , Transformación Genética , Transgenes
11.
Plant Cell Rep ; 28(3): 387-95, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19048258

RESUMEN

An improved method for the Agrobacterium infiltration of epicotyl segments of 'Pineapple' sweet orange [Citrus sinensis (L.) Osbeck] and 'Swingle' citrumelo [Citrus paradisi Macf. X Poncirus trifoliata (L.) Raf.] was developed in order to increase transformation frequency. Sonication-assisted Agrobacterium-mediated transformation (SAAT), vacuum infiltration, and a combination of the two procedures were compared with conventional Agrobacterium-mediated inoculation method ('dipping' method). It was observed that the morphogenic potential of the epicotyl segments decreased as the duration of SAAT and vacuum treatments increased. Transient GUS expression was not affected by the different SAAT treatments, but it was significantly enhanced by the vacuum infiltration treatments. The highest transformation efficiencies were obtained when the explants were subjected to a combination of SAAT for 2 s followed by 10 min of vacuum infiltration. PCR and Southern blot analysis of the uidA gene were used to confirm the integration of the transgenes. The transformation frequencies achieved in this study (8.4% for 'Pineapple' sweet orange and 11.2% for 'Swingle' citrumelo) are the highest ones reported for both cultivars.


Asunto(s)
Citrus/genética , Técnicas de Transferencia de Gen , Plantas Modificadas Genéticamente/genética , Rhizobium/genética , Sonicación , Transformación Genética , Vacio
12.
Mol Plant Pathol ; 18(7): 976-989, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27362693

RESUMEN

Xanthomonas citri ssp. citri (X. citri), causal agent of citrus canker, uses transcription activator-like effectors (TALEs) as major pathogenicity factors. TALEs, which are delivered into plant cells through the type III secretion system (T3SS), interact with effector binding elements (EBEs) in host genomes to activate the expression of downstream susceptibility genes to promote disease. Predictably, TALEs bind EBEs in host promoters via known combinations of TALE amino acids to DNA bases, known as the TALE code. We introduced 14 EBEs, matching distinct X. citri TALEs, into the promoter of the pepper Bs3 gene (ProBs31EBE ), and fused this engineered promoter with multiple EBEs (ProBs314EBE ) to either the ß-glucuronidase (GUS) reporter gene or the coding sequence (cds) of the pepper gene, Bs3. TALE-induced expression of the Bs3 cds in citrus leaves resulted in no visible hypersensitive response (HR). Therefore, we utilized a different approach in which ProBs31EBE and ProBs314EBE were fused to the Xanthomonas gene, avrGf1, which encodes a bacterial effector that elicits an HR in grapefruit and sweet orange. We demonstrated, in transient assays, that activation of ProBs314EBE by X. citri TALEs is T3SS dependent, and that the expression of AvrGf1 triggers HR and correlates with reduced bacterial growth. We further demonstrated that all tested virulent X. citri strains from diverse geographical locations activate ProBs314EBE . TALEs are essential for the virulence of X. citri strains and, because the engineered promoter traps are activated by multiple TALEs, this concept has the potential to confer broad-spectrum, durable resistance to citrus canker in stably transformed plants.


Asunto(s)
Citrus/microbiología , Genes Bacterianos , Ingeniería Genética , Regiones Promotoras Genéticas , Efectores Tipo Activadores de la Transcripción/metabolismo , Xanthomonas/genética , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Capsicum/genética , Muerte Celular , Reacciones Cruzadas , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Virulencia/genética , Xanthomonas/crecimiento & desarrollo
13.
Hortic Res ; 3: 16022, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27222722

RESUMEN

Pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) is an important component of plant innate immunity. In a previous study, we showed that the PAMP flg22 from Xanthomonas citri ssp. citri (Xflg22), the causal agent of citrus canker, induced PTI in citrus, which correlated with the observed levels of canker resistance. Here, we identified and sequenced two bacterial flagellin/flg22 receptors (FLS2-1 and FLS2-2) from 'Duncan' grapefruit (Citrus paradisi, CpFLS2-1 and CpFLS2-2) and 'Sun Chu Sha' mandarin (C. reticulata, CrFLS2-1 and CrFLS2-2). We were able to isolate only one FLS2 from 'Nagami' kumquat (Fortunella margarita, FmFLS2-1) and gene flanking sequences suggest a rearrangement event that resulted in the deletion of FLS2-2 from the genome. Phylogenetic analysis, gene structure and presence of critical amino acid domains all indicate we identified the true FLS2 genes in citrus. FLS2-2 was more transcriptionally responsive to Xflg22 than FLS2-1, with induced expression levels higher in canker-resistant citrus than in susceptible ones. Interestingly, 'Nagami' kumquat showed the highest FLS2-1 steady-state expression levels, although it was not induced by Xflg22. We selected FmFLS2-1, CrFLS2-2 and CpFLS2-2 to further evaluate their capacity to enhance bacterial resistance using Agrobacterium-mediated transient expression assays. Both FmFLS2-1 and CrFLS2-2, the two proteins from canker-resistant species, conferred stronger Xflg22 responses and reduced canker symptoms in leaves of the susceptible grapefruit genotype. These two citrus genes will be useful resources to enhance PTI and achieve resistance against canker and possibly other bacterial pathogens in susceptible citrus types.

14.
Mol Plant Pathol ; 16(5): 507-20, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25231217

RESUMEN

The bacterial agent of citrus canker disease (Xanthomonas citri ssp. citri, Xcc) has caused tremendous economic losses to the citrus industry around the world. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is important to plant immunity. In this study, we compared the defence responses of citrus canker-resistant and citrus canker-susceptible genotypes to the Xcc-derived PAMP flg22 (Xflg22) by analysing the expression of 20 citrus defence-associated genes. We showed that, in the most resistant genotype, 'Nagami' kumquat, there was significant induction of several defence genes (EDS1, NDR1, PBS1, RAR1, SGT1, PAL1, NPR2 and NPR3) as early as 6 h and up to 72 h after Xflg22 treatment. At the other end of the spectrum, highly susceptible 'Duncan' grapefruit showed no induction of the same defence genes, even 120 h after treatment. Citrus genotypes with partial levels of resistance showed intermediate levels of transcriptional reprogramming that correlated with their resistance level. Xflg22 also triggered a rapid oxidative burst in all genotypes which was higher and accompanied by the induction of PTI marker genes (WRKY22 and GST1) only in the more resistant genotypes. Pretreatment with Xflg22 prior to Xcc inoculation inhibited bacterial growth in kumquat, but not in grapefruit. A flagellin-deficient Xcc strain (XccΔfliC) showed greater growth increase relative to wild-type Xcc in kumquat than in grapefruit. Taken together, our results indicate that Xflg22 initiates strong PTI in canker-resistant genotypes, but not in susceptible ones, and that a robust induction of PTI is an important component of citrus resistance to canker.


Asunto(s)
Citrus/genética , Citrus/microbiología , Resistencia a la Enfermedad/inmunología , Flagelina/metabolismo , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Citrus/crecimiento & desarrollo , Citrus/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Mutación/genética , Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Estallido Respiratorio , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Transcripción Genética
15.
Plant Cell Rep ; 27(1): 93-104, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17882423

RESUMEN

Grapefruit (Citrus paradisi) transgenic plants transformed with a variety of constructs derived from the Citrus tristeza virus (CTV) genome were tested for their resistance to the virus. Most transgenic lines were susceptible (27 lines), a few were partially resistant (6 lines) and only one line, transformed with the 3' end of CTV was resistant. Transgene expression levels and siRNA accumulation were determined to identify whether the resistance observed was RNA-mediated. The responses were varied. At least one resistant plant from a partially resistant line showed no steady-state transgene mRNA, siRNA accumulation and no viral RNA, implicating posttranscriptional gene silencing (PTGS) as the mechanism of resistance. The most resistant line showed no transgene mRNA accumulation and promoter methylation of cytosines in all contexts, the hallmark of RNA-directed DNA methylation and transcriptional gene silencing (TGS). The variety of responses, even among clonally propagated plants, is unexplained but is not unique to citrus. The genetics of CTV, host response or other factors may be responsible for this variability.


Asunto(s)
Citrus paradisi/genética , Enfermedades de las Plantas/genética , Virus de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Secuencia de Bases , Southern Blotting , Citrus paradisi/virología , Inmunidad Innata/genética , Modelos Genéticos , Datos de Secuencia Molecular , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Plantas Modificadas Genéticamente/virología , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transformación Genética/genética
16.
Plant Mol Biol ; 62(1-2): 83-97, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16900323

RESUMEN

Citrus is a cold-sensitive genus and most commercially important varieties of citrus are susceptible to freezes. On the other hand, Poncirus trifoliata (L.) Raf. is an interfertile Citrus relative that can tolerate temperatures as low as -26 degrees C when fully cold acclimated. Therefore, it has been used for improving cold tolerance in cold-sensitive commercial citrus rootstock varieties and in attempts to improve scion varieties. In this study, cDNA libraries were constructed from both 2-day cold-acclimated and from non-acclimated Poncirus seedlings using a subtractive hybridization method with the objective of identifying cold-regulated genes. A total of 192 randomly picked clones, 136 from the cold-induced library and 56 from the cold-repressed library, were sequenced. The majority of these clones showed sequence homology to previously identified cold-induced and/or environmental stress-regulated genes in Arabidopsis. In addition, some of them shared homology with cold and/or environmental stress-induced genes previously identified in other herbaceous and woody perennial plants and some showed no homology with sequences in GenBank. When these 192 cDNAs were analyzed by reverse northern blot with cold-acclimated and non-acclimated probes, 92 of the cDNAs displayed significantly increased expression, ranging from 2 to 49-fold, during cold acclimation; all 92 were from the cold-induced library. Surprisingly no clones displayed significantly repressed expression in response to cold. Analysis of a number of selected genes individually in northern blots of mRNA from cold-acclimated and non-acclimated plants largely confirmed the reverse northern analysis, verifying induction of expression of selected cDNAs in response to cold. The results showed that subtractive hybridization is an efficient method for identification of cold-induced genes in plants with limited sequence information available. This study also revealed that genes induced during cold acclimation of the cold-hardy citrus relative P. trifoliata are similar to those in Arabidopsis, indicating that similar pathways may be present and activated during cold acclimation in woody perennial plants.


Asunto(s)
Citrus/genética , Regulación de la Expresión Génica de las Plantas , Aclimatación , Citrus/clasificación , Frío , Cartilla de ADN , ADN Complementario/genética , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , Reacción en Cadena de la Polimerasa , ARN de Planta/genética , ARN de Planta/aislamiento & purificación , Semillas/genética , Semillas/fisiología
17.
Funct Plant Biol ; 33(9): 863-875, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32689297

RESUMEN

Poncirus trifoliata (L.) Raf. is a cold-hardy, interfertile Citrus relative able to tolerate temperatures as low as -26°C when cold acclimated. Therefore, it has been used for improving cold tolerance in cold-sensitive commercial citrus varieties. A cold-induced cDNA library was constructed by subtractive hybridisation of non-acclimated and 2-d cold-acclimated P. trifoliata seedlings and many genes induced in response to cold were identified. Two of these cDNAs, PI-B05 and PI-C10, were selected from this library for further characterisation. Full-length cDNA sequences of these genes were obtained by 5' and 3' rapid amplification of cDNA ends (RACE). Sequence analysis revealed that PI-B05 contained an apetala2 / ethylene response factor (AP2 / ERF) domain and showed homology with ERF proteins from other plants, some of which are involved in environmental stress-induced gene expression. PI-C10 contained both AP2 / ERF and B3 DNA binding domains and showed homology with other plant proteins in the RAV subfamily of the AP2 / ERF transcription factors, some of which are induced in response to cold and other environmental stresses. Expression patterns of these genes in cold-tolerant P. trifoliata and cold-sensitive pummelo [Citrus grandis (L.) Osb.] in response to cold and drought at different time points were analysed by northern blots. Expression analysis showed that both genes were induced in response to cold, but not under drought conditions in cold-hardy P. trifoliata. However, little or no expression of these genes was detected by northern analysis in cold-sensitive pummelo under cold or drought conditions. The sequence analysis and expression data indicated that these genes may play a role in cold-responsive gene expression in cold-hardy P. trifoliata and could possibly be used for improving cold tolerance in cold-sensitive citrus cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA