RESUMEN
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE: Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Asunto(s)
Células Dendríticas , Análisis de la Célula Individual , Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/fisiología , Infección por el Virus Zika/virología , Infección por el Virus Zika/inmunología , Células Dendríticas/virología , Células Dendríticas/inmunología , ARN Viral/metabolismo , ARN Viral/genética , Interferón Tipo I/metabolismo , Interacciones Huésped-Patógeno , Análisis de Secuencia de ARNRESUMEN
The influenza A virus causes substantial morbidity and mortality worldwide every year and poses a constant threat of an emergent pandemic. Seasonal influenza vaccination strategies fail to provide complete protection against infection due to antigenic drift and shift. A universal vaccine targeting a conserved influenza epitope could substantially improve current vaccination strategies. The ectodomain of the matrix 2 protein (M2e) of influenza is a highly conserved epitope between virus strains but is also poorly immunogenic. Administration of M2e and the immunostimulatory stimulator of interferon genes (STING) agonist 3'3'-cyclic guanosine-adenosine monophosphate (cGAMP) encapsulated in microparticles made of acetalated dextran (Ace-DEX) has previously been shown to be effective for increasing the immunogenicity of M2e, primarily through T-cell-mediated responses. Here, the immunogenicity of Ace-DEX MPs delivering M2e was further improved by conjugating the M2e peptide to the particle surface in an effort to affect B-cell responses more directly. Conjugated or encapsulated M2e co-administered with Ace-DEX MPs containing cGAMP were used to vaccinate mice, and it was shown that two or three vaccinations could fully protect against a lethal influenza challenge, while only the surface-conjugated antigen constructs could provide some protection against lethal challenge with only one vaccination. Additionally, the use of a reducible linker augmented the T-cell response to the antigen. These results show the utility of conjugating M2e to the surface of a particle carrier to increase its immunogenicity for use as the antigen in a universal influenza vaccine.
Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Gripe Humana/prevención & control , Dextranos/química , Epítopos , Ratones Endogámicos BALB C , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Anticuerpos AntiviralesRESUMEN
We describe rapid detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant using targeted spike single-nucleotide polymorphism polymerase chain reaction and viral genome sequencing. This case occurred in a fully vaccinated and boosted returning traveler with mild symptoms who was identified through community surveillance rather than clinical care.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genoma Viral , Humanos , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genéticaRESUMEN
The COVID-19 pandemic resulting from the emergence of the coronavirus SARS-CoV-2 remains a major global health concern. Pregnant individuals are more likely to develop severe COVID-19 and a number of pregnancy complications have been observed in COVID-19 patients. To date, little is known about the impact of COVID-19 on pregnancy. In this review, we examine key aspects of pregnancy that may be impacted by COVID-19 and summarize the current literature on SARS-CoV-2 infection of the placenta and in utero vertical transmission. Furthermore, we highlight recent studies exploring the role of the maternal antibody response to SARS-CoV-2 during pregnancy and the passive transfer of maternal antibodies from mothers with COVID-19 to fetus.
Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Transmisión Vertical de Enfermedad Infecciosa , Intercambio Materno-Fetal/inmunología , Complicaciones Infecciosas del Embarazo/virología , SARS-CoV-2/inmunología , COVID-19/sangre , Femenino , Humanos , Placenta/virología , Embarazo , Útero/virologíaRESUMEN
The primary cause of mortality for glioblastoma (GBM) is local tumor recurrence following standard-of-care therapies, including surgical resection. With most tumors recurring near the site of surgical resection, local delivery of chemotherapy at the time of surgery is a promising strategy. Herein drug-loaded polymer scaffolds with two distinct degradation profiles were fabricated to investigate the effect of local drug delivery rate on GBM recurrence following surgical resection. The novel biopolymer, acetalated dextran (Ace-DEX), was compared with commercially available polyester, poly(l-lactide) (PLA). Steady-state doxorubicin (DXR) release from Ace-DEX scaffolds was found to be faster when compared with scaffolds composed of PLA, in vitro. This increased drug release rate translated to improved therapeutic outcomes in a novel surgical model of orthotopic glioblastoma resection and recurrence. Mice treated with DXR-loaded Ace-DEX scaffolds (Ace-DEX/10DXR) resulted in 57% long-term survival out to study completion at 120 days compared with 20% survival following treatment with DXR-loaded PLA scaffolds (PLA/10DXR). Additionally, all mice treated with PLA/10DXR scaffolds exhibited disease progression by day 38, as defined by a 5-fold growth in tumor bioluminescent signal. In contrast, 57% of mice treated with Ace-DEX/10DXR scaffolds displayed a reduction in tumor burden, with 43% exhibiting complete remission. These results underscore the importance of polymer choice and drug release rate when evaluating local drug delivery strategies to improve prognosis for GBM patients undergoing tumor resection.
Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/prevención & control , Acetales/química , Animales , Antibióticos Antineoplásicos/farmacocinética , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Dextranos/química , Progresión de la Enfermedad , Doxorrubicina/farmacocinética , Liberación de Fármacos , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10x Genomics Chromium single cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human moDCs infected with ZIKV at the single cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN dependent and independent genes (antiviral module). We modeled the ZIKV specific antiviral state at the protein level leveraging experimentally derived protein-interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per cell basis with experimental protein interaction data. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool to gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
RESUMEN
Waning immunity and the emergence of immune evasive SARS-CoV-2 variants jeopardize vaccine efficacy leading to breakthrough infections. We have previously shown that innate immune cells play a critical role in controlling SARS-CoV-2. To investigate the innate immune response during breakthrough infections, we modeled breakthrough infections by challenging low-dose vaccinated mice with a vaccine-mismatched SARS-CoV-2 Beta variant. We found that low-dose vaccinated infected mice had a 2-log reduction in lung viral burden, but increased immune cell infiltration in the lung parenchyma, characterized by monocytes, monocyte-derived macrophages, and eosinophils. Single cell RNA-seq revealed viral RNA was highly associated with eosinophils that corresponded to a unique IFN-γ biased signature. Antibody-mediated depletion of eosinophils in vaccinated mice resulted in increased virus replication and dissemination in the lungs, demonstrating that eosinophils in the lungs are protective during SARS-CoV-2 breakthrough infections. These results highlight the critical role for the innate immune response in vaccine mediated protection against SARS-CoV-2.
RESUMEN
A zinc-carnosine (ZnCar) metal-organic coordination polymer was fabricated in biologically relevant N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer for use as a vaccine platform. In vitro, ZnCar exhibited significantly less cytotoxicity than a well-established zeolitic imidazolate framework (ZIF-8). Adsorption of CpG on the ZnCar surface resulted in enhanced innate immune activation compared to soluble CpG. The model antigen ovalbumin (OVA) was encapsulated in ZnCar and exhibited acid-sensitive release in vitro. When injected intramuscularly on days 0 and 21 in C57BL/6 mice, OVA-specific serum total IgG and IgG1 were significantly greater in all groups with ZnCar and antigen compared to soluble controls. Th1-skewed IgG2c antibodies were significantly greater in OVA and CpG groups delivered with ZnCar for all time points, regardless of whether the antigen and adjuvant were co-formulated in one material or co-delivered in separate materials. When broadly acting Computationally Optimized Broadly Reactive Antigen (COBRA) P1 influenza hemagglutinin (HA) was ligated to ZnCar via its His-tag, significantly greater antibody levels were observed at all time points compared to soluble antigen and CpG. ZnCar-formulated antigen elicited increased peptide presentation to B3Z T cells in vitro and production of IL-2 after ex vivo antigen recall of splenocytes isolated from vaccinated mice. Overall, this work displays the formation of a zinc-carnosine metal-organic coordination polymer that can be applied as a platform for recombinant protein-based vaccines.
Asunto(s)
Carnosina , Vacunas contra la Influenza , Animales , Antígenos , Ratones , Ratones Endogámicos C57BL , Ovalbúmina , Polímeros , ZincRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant emerged in November 2021 and consists of several mutations within the spike. We use serum from mRNA-vaccinated individuals to measure neutralization activity against omicron in a live-virus assay. At 2-4 weeks after a primary series of vaccinations, we observe a 30-fold reduction in neutralizing activity against omicron. Six months after the initial two-vaccine doses, sera from naive vaccinated subjects show no neutralizing activity against omicron. In contrast, COVID-19-recovered individuals 6 months after receiving the primary series of vaccinations show a 22-fold reduction, with the majority of the subjects retaining neutralizing antibody responses. In naive individuals following a booster shot (third dose), we observe a 14-fold reduction in neutralizing activity against omicron, and over 90% of subjects show neutralizing activity. These findings show that a third dose is required to provide robust neutralizing antibody responses against the omicron variant.
Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunación/métodos , Adulto , Anciano , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Humanos , Inmunización Secundaria/métodos , Masculino , Persona de Mediana Edad , Mutación , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Adulto JovenRESUMEN
PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.
Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anciano , Vacunas contra la COVID-19 , Formación de Anticuerpos , SARS-CoV-2 , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunización , Vacunación , Anticuerpos Neutralizantes , ARN Mensajero , Vacunas de ARNmRESUMEN
The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naïve vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.
RESUMEN
Previously, high-aspect- ratio ribbon-like microconfetti (MC) composed of acetalated dextran (Ace-DEX) have been shown to form a subcutaneous depot for sustained drug release. In this study, MC were explored as an injectable vaccine platform. Production of MC by electrospinning followed by high-shear homogenization allowed for precise control over MC fabrication. Three distinct sizes of MC, small (0.67 × 10.2 µm2), medium (1.28 × 20.7 µm2), and large (5.67 × 90.2 µm2), were fabricated and loaded with the adjuvant, resiquimod. Steady release rates of resiquimod were observed from MC, indicating their ability to create an immunostimulatory depot in vivo. Resiquimod-loaded MC stimulated inflammatory cytokine production in bone marrow-derived dendritic cells without incurring additional cytotoxicity in vitro. Interestingly, even medium and large MC were able to be internalized by antigen-presenting cells and facilitate antigen presentation when ovalbumin was adsorbed onto their surface. After subcutaneous injection in vivo with adsorbed ovalbumin, blank MC of all sizes were found to stimulate a humoral response. Adjuvant activity of resiquimod was enhanced by loading it into MC and small- and medium-sized MC effectively induced a Th1-skewed immune response. Antigen co-delivered with adjuvant-loaded MC of various sizes illustrates a new potential vaccine platform.
Asunto(s)
Adyuvantes Inmunológicos/química , Biopolímeros/química , Portadores de Fármacos/química , Imidazoles/química , Adyuvantes Inmunológicos/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Dextranos/química , Imidazoles/metabolismo , Imidazoles/farmacología , Inmunidad Humoral/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/química , Ovalbúmina/inmunología , Tamaño de la Partícula , Células RAW 264.7 , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunologíaRESUMEN
Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Materiales Biocompatibles , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Recurrencia Local de Neoplasia , Células MadreRESUMEN
Glioblastoma (GBM) is a highly aggressive and heterogeneous form of brain cancer. Genotypic and phenotypic heterogeneity drives drug resistance and tumor recurrence. Combination chemotherapy could overcome drug resistance; however, GBM's location behind the blood-brain barrier severely limits chemotherapeutic options. Interstitial therapy, delivery of chemotherapy locally to the tumor site, via a biodegradable polymer implant can overcome the blood-brain barrier and increase the range of drugs available for therapy. Ideal drug candidates for interstitial therapy are those that are potent against GBM and work in combination with both standard-of-care therapy and new precision medicine targets. Herein we evaluated paclitaxel for interstitial therapy, investigating the effect of combination with both temozolomide, a clinical standard-of-care chemotherapy for GBM, and everolimus, a mammalian target of rapamycin (mTOR) inhibitor that modulates aberrant signaling present in >80% of GBM patients. Tested against a panel of GBM cell lines in vitro, paclitaxel was found to be effective at nanomolar concentrations, complement therapy with temozolomide, and synergize strongly with everolimus. The strong synergism seen with paclitaxel and everolimus was then explored in vivo. Paclitaxel and everolimus were separately formulated into fibrous scaffolds composed of acetalated dextran, a biodegradable polymer with tunable degradation rates, for implantation in the brain. Acetalated dextran degradation rates were tailored to attain matching release kinetics (~3% per day) of both paclitaxel and everolimus to maintain a fixed combination ratio of the two drugs. Combination interstitial therapy of both paclitaxel and everolimus significantly reduced GBM growth and improved progression free survival in two clinically relevant orthotopic models of GBM resection and recurrence. This work illustrates the advantages of synchronized interstitial therapy of paclitaxel and everolimus for post-surgical tumor control of GBM.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Combinación de Medicamentos , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Ratones Desnudos , Medicina de Precisión , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Tumoricidal neural stem cells (NSCs) are an emerging therapy to combat glioblastoma (GBM). This therapy employs genetically engineered NSCs that secrete tumoricidal agents to seek out and kill tumor foci remaining after GBM surgical resection. Biomaterial scaffolds have previously been utilized to deliver NSCs to the resection cavity. Here, we investigated the impact of scaffold degradation rate on NSC persistence in the brain resection cavity. Composite acetalated dextran (Ace-DEX) gelatin electrospun scaffolds were fabricated with two distinct degradation profiles created by changing the ratio of cyclic to acyclic acetal coverage of Ace-DEX. In vitro, fast degrading scaffolds were fully degraded by one week, whereas slow degrading scaffolds had a half-life of >56 days. The scaffolds also retained distinct degradation profiles in vivo. Two different NSC lines readily adhered to and remained viable on Ace-DEX gelatin scaffolds, in vitro. Therapeutic NSCs secreting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) had the same TRAIL output as tissue culture treated polystyrene (TCPS) when seeded on both scaffolds. Furthermore, secreted TRAIL was found to be highly potent against the human derived GBM cell line, GBM8, in vitro. Firefly luciferase expressing NSCs were seeded on scaffolds, implanted in a surgical resection cavity and their persistence in the brain was monitored by bioluminescent imaging (BLI). NSC loaded scaffolds were compared to a direct injection (DI) of NSCs in suspension, which is the current clinical approach to NSC therapy for GBM. Fast and slow degrading scaffolds enhanced NSC implantation efficiency 2.87 and 3.08-fold over DI, respectively. Interestingly, scaffold degradation profile did not significantly impact NSC persistence. However, persistence and long-term survival of NSCs was significantly greater for both scaffolds compared to DI, with scaffold implanted NSCs still detected by BLI at day 120 in most mice. Overall, these results highlight the benefit of utilizing a scaffold for application of tumoricidal NSC therapy for GBM.
Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Células-Madre Neurales/patología , Andamios del Tejido/química , Acetilación , Animales , Línea Celular , Supervivencia Celular , Reactivos de Enlaces Cruzados/química , Dextranos/química , Femenino , Gelatina/química , Ratones Desnudos , TemperaturaRESUMEN
Current interstitial therapies for glioblastoma can overcome the blood-brain barrier but fail to optimally release therapy at a rate that stalls cancer reoccurrence. To address this lapse, acetalated dextran (Ace-DEX) nanofibrous scaffolds were used for their unique degradation rates that translate to a broad range of drug release kinetics. A distinctive range of drug release rates was illustrated via electrospun Ace-DEX or poly(lactic acid) (PLA) scaffolds. Scaffolds composed of fast, medium, and slow degrading Ace-DEX resulted in 14.1%, 2.9%, and 1.3% paclitaxel released per day. To better understand the impact of paclitaxel release rate on interstitial therapy, two clinically relevant orthotopic glioblastoma mouse models were explored: (1) a surgical model of resection and recurrence (resection model) and (2) a distant metastasis model. The effect of unique drug release was illustrated in the resection model when a 78% long-term survival was observed with combined fast and slow release scaffolds, in comparison to a survival of 20% when the same dose is delivered at a medium release rate. In contrast, only the fast release rate scaffold displayed treatment efficacy in the distant metastasis model. Additionally, the acid-sensitive Ace-DEX scaffolds were shown to respond to the lower pH conditions associated with GBM tumors, releasing more paclitaxel in vivo when a tumor was present in contrast to nonacid sensitive PLA scaffolds. The unique range of tunable degradation and stimuli-responsive nature makes Ace-DEX a promising drug delivery platform to improve interstitial therapy for glioblastoma.
Asunto(s)
Antineoplásicos/uso terapéutico , Dextranos/química , Portadores de Fármacos/química , Glioblastoma/tratamiento farmacológico , Paclitaxel/uso terapéutico , Poliésteres/química , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones Desnudos , Metástasis de la Neoplasia/tratamiento farmacológico , Paclitaxel/farmacocinética , Prevención Secundaria/métodos , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Chitin, one of the most abundant natural amino polysaccharides, is obtained primarily from the exoskeletons of crustaceans, crabs and shrimp. Chitin and its derivative chitosan have gained much attention in the field of biomedical research due to attractive properties such as biocompatibility, non-toxicity, biodegradability, low immunogenicity, and ease of availability. While work has been done on the use of chitin and chitosan as functional biomaterials by imparting specific properties, the potential of chitin as a biomaterial is somewhat limited owing to its intractable processing. In this work, we propose a facile reaction to modify the chitin chain with photoactive moieties for the realization of photocrosslinkable chitin. This chitin derivative is easily usable with a benign solvent formic acid to be able to form mechanically robust, optically transparent sheets. These films exhibit comparable tensile properties to that of native chitin and chitosan and better surface wettability. Most importantly, this material can be used to form precise, high resolution microarchitectures on both rigid and flexible substrates using a facile bench top photolithography technique. These flexible micropatterned 2D sheets of chitin were demonstrated as a dynamic cell culture substrate for the adhesion and proliferation of fibroblasts, wherein the chitin micropatterns act as a template for spatial guidance of cells. This chitin-based biopolymer can find diverse uses in tissue engineering as well as to form components for degradable bioelectronics.
Asunto(s)
Materiales Biocompatibles , Quitina/análogos & derivados , Hidrogeles , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Hidrogeles/síntesis química , Hidrogeles/química , Ratones , Células 3T3 NIHAsunto(s)
Heridas y Lesiones/complicaciones , Heridas y Lesiones/fisiopatología , Acidosis/etiología , Acidosis/fisiopatología , Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/fisiopatología , Humanos , Hipotermia/etiología , Hipotermia/fisiopatología , Hipovolemia/etiología , Hipovolemia/fisiopatología , Heridas y Lesiones/metabolismo , Heridas y Lesiones/mortalidadRESUMEN
The optimal degree of resuscitation in the initial control and resuscitative phase of trauma care remains unclear. Many attempts have been made with animal studies to determine the optimal degree and method of resuscitation. Human studies were first conducted in 1994 and the results were inconclusive and have not been replicated. The question of the volume, rate, and type of fluid to be infused for initial control and adequate resuscitation of the trauma patient remains to be answered.