Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887295

RESUMEN

We recently described cell-projection pumping as a mechanism transferring cytoplasm between cells. The uptake of fibroblast cytoplasm by co-cultured SAOS-2 osteosarcoma cells changes SAOS-2 morphology and increases cell migration and proliferation, as seen by single-cell tracking and in FACS separated SAOS-2 from co-cultures. Morphological changes in SAOS-2 seen by single cell tracking are consistent with previous observations in fixed monolayers of SAOS-2 co-cultures. Notably, earlier studies with fixed co-cultures were limited by the absence of a quantitative method for identifying sub-populations of co-cultured cells, or for quantitating transfer relative to control populations of SAOS-2 or fibroblasts cultured alone. We now overcome that limitation by a novel Cartesian plot analysis that identifies individual co-cultured cells as belonging to one of five distinct cell populations, and also gives numerical measure of similarity to control cell populations. We verified the utility of the method by first confirming the previously established relationship between SAOS-2 morphology and uptake of fibroblast contents, and also demonstrated similar effects in other cancer cell lines including from melanomas, and cancers of the ovary and colon. The method was extended to examine global DNA methylation, and while there was no clear effect on SAOS-2 DNA methylation, co-cultured fibroblasts had greatly reduced DNA methylation, similar to cancer associated fibroblasts.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Femenino , Fibroblastos/metabolismo , Humanos , Osteosarcoma/metabolismo , Fenotipo
2.
Biophys J ; 118(6): 1248-1260, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32087096

RESUMEN

We earlier reported cytoplasmic fluorescence exchange between cultured human fibroblasts (Fibs) and malignant cells (MCs). Others report similar transfer via either tunneling nanotubes (TNTs) or shed membrane vesicles, and this changes the phenotype of recipient cells. Our time-lapse microscopy showed most exchange was from Fibs into MCs, with less in the reverse direction. Although TNTs were seen, we were surprised transfer was not via TNTs but was instead via fine and often branching cell projections that defied direct visual resolution because of their size and rapid movement. Their structure was revealed nonetheless by their organellar cargo and the grooves they formed indenting MCs, which was consistent with holotomography. Discrete, rapid, and highly localized transfer events evidenced against a role for shed vesicles. Transfer coincided with rapid retraction of the cell projections, suggesting a hydrodynamic mechanism. Increased hydrodynamic pressure in retracting cell projections normally returns cytoplasm to the cell body. We hypothesize "cell-projection pumping" (CPP), in which cytoplasm in retracting cell projections partially equilibrates into adjacent recipient cells via microfusions that form temporary intercellular cytoplasmic continuities. We tested plausibility for CPP by combined mathematical modeling, comparison of predictions from the model with experimental results, and then computer simulations based on experimental data. The mathematical model predicted preferential CPP into cells with lower cell stiffness, expected from equilibration of pressure toward least resistance. Predictions from the model were satisfied when Fibs were cocultured with MCs and fluorescence exchange was related to cell stiffness by atomic force microscopy. When transfer into 5000 simulated recipient MCs or Fibs was studied in computer simulations, inputting experimental cell stiffness and donor cell fluorescence values generated transfers to simulated recipient cells similar to those seen by experiment. We propose CPP as a potentially novel mechanism in mammalian intercellular cytoplasmic transfer and communication.


Asunto(s)
Comunicación Celular , Nanotubos , Animales , Técnicas de Cocultivo , Citoplasma , Citosol , Humanos , Hidrodinámica
3.
Proc Natl Acad Sci U S A ; 111(8): 2885-90, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516138

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a medicinally important glycoprotein, used as an immunostimulant following bone-marrow transplant. On the basis of reports of its potential utility as an anticancer vaccine adjuvant, we undertook to develop a synthetic route toward single-glycoform GM-CSF. We describe herein a convergent total synthesis of GM-CSF aglycone and two homogeneous glycoforms. Analytical and biological studies confirm the structure and activity of these synthetic congeners.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/síntesis química , Modelos Moleculares , Conformación Proteica , Alanina/química , Secuencia de Aminoácidos , Cisteína/química , Escherichia coli , Glicosilación , Datos de Secuencia Molecular , Estructura Molecular
4.
Blood ; 123(16): 2550-61, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24394665

RESUMEN

The transcription factor lymphoid enhancer-binding factor 1 (LEF-1), which plays a definitive role in granulocyte colony-stimulating factor (G-CSF) receptor-triggered granulopoiesis, is downregulated in granulocytic progenitors of severe congenital neutropenia (CN) patients. However, the exact mechanism of LEF-1 downregulation is unclear. CN patients are responsive to therapeutically high doses of G-CSF and are at increased risk of developing acute myeloid leukemia. The normal expression of LEF-1 in monocytes and lymphocytes, whose differentiation is unaffected in CN, suggests the presence of a granulopoiesis-specific mechanism downstream of G-CSF receptor signaling that leads to LEF-1 downregulation. Signal transducer and activator of transcription 5 (STAT5) is activated by G-CSF and is hyperactivated in acute myeloid leukemia. Here, we investigated the effects of activated STAT5 on LEF-1 expression and functions in hematopoietic progenitor cells. We demonstrated that constitutively active STAT5a (caSTAT5a) inhibited LEF-1-dependent autoregulation of the LEF-1 gene promoter by binding to the LEF-1 protein, recruiting Nemo-like kinase and the E3 ubiquitin-ligase NARF to LEF-1, leading to LEF-1 ubiquitination and a reduction in LEF-1 protein levels. The proteasome inhibitor bortezomib reversed the defective G-CSF-triggered granulocytic differentiation of CD34(+) cells from CN patients in vitro, an effect that was accompanied by restoration of LEF-1 protein levels and LEF-1 messenger RNA autoregulation. Taken together, our data define a novel mechanism of LEF-1 downregulation in CN patients via enhanced ubiquitination and degradation of LEF-1 protein by hyperactivated STAT5.


Asunto(s)
Ácidos Borónicos/farmacología , Diferenciación Celular/efectos de los fármacos , Granulocitos/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Neutropenia/congénito , Proteolisis/efectos de los fármacos , Pirazinas/farmacología , Antígenos CD34/metabolismo , Bortezomib , Diferenciación Celular/genética , Células Cultivadas , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Granulocitos/patología , Granulocitos/fisiología , Células HEK293 , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Neutropenia/genética , Neutropenia/metabolismo , Neutropenia/patología , Factor de Transcripción STAT5/fisiología
6.
J Am Chem Soc ; 137(40): 13167-75, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26401918

RESUMEN

Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation-desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/química , Péptidos/química , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular
7.
Biol Blood Marrow Transplant ; 21(7): 1334-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25865647

RESUMEN

Cord blood (CB) leukocytes have inherent telomere length (TL) variation, and CB hematopoietic stem cells (HSC) can maintain high telomerase levels preventing telomere attrition in vitro. We evaluated TL changes in 13 adult double-unit CB transplant (CBT) recipients. In the 26 units, we observed a marked variation in CB TL at thaw (median, 9.99 kilobases [kb]; range, 6.85 to 13.5). All 13 patients engrafted. Of 11 engrafting with 1 unit, there was no correlation between unit dominance and TL (mean dominant unit TL, 8.84 kb ± 1.76; mean nonengrafting unit TL, 10.3 kb ± 1.81; P = .77). Serial measurements of TL up to 1 year after CBT demonstrated an overall mean 3.04 kb ± .16 TL decrease with only 1 patient exhibiting telomere maintenance. In summary, initial TL does not predict CB unit dominance. Moreover, our analysis suggests neonatal hematopoiesis makes a transition to an HSC characterized by changes in average TL and potentially low telomerase asymmetric cell division in adult CBT recipients. Further investigation of alterations in telomere length and its clinical implications after transplantation of this observation are indicated.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Neoplasias Hematológicas/terapia , Agonistas Mieloablativos/uso terapéutico , Homeostasis del Telómero , Telómero/química , Acondicionamiento Pretrasplante , Adulto , Femenino , Supervivencia de Injerto , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/patología , Humanos , Leucocitos Mononucleares/química , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Receptores de Trasplantes , Resultado del Tratamiento , Donante no Emparentado
8.
Histochem Cell Biol ; 144(6): 533-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26357955

RESUMEN

Differing stimuli affect cell stiffness while cancer metastasis is associated with reduced cell stiffness. Cell stiffness determined by atomic force microscopy has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. Ninety µm square fields were recorded from ten separate sites of cultured human dermal fibroblasts (HDF) and three sites each for melanoma (MM39, WM175, and MeIRMu), osteosarcoma (SAOS-2 and U2OS), and ovarian carcinoma (COLO316 and PEO4) cell lines, each site providing 1024 measurements as 32 × 32 square grids. Stiffness recorded below 0.8 µm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 µm was analysed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p < 0.0001) and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high-height levels. We suggest that our stiffness-fingerprint analytical method provides a more nuanced description than previously reported and will facilitate study of the stiffness response to cell stimulation.


Asunto(s)
Fibroblastos/citología , Microscopía de Fuerza Atómica/métodos , Neoplasias/patología , Células Cultivadas , Humanos
9.
Blood ; 121(20): 4082-9, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23520338

RESUMEN

Direct transduction of the homeobox (HOX) protein HOXB4 promotes the proliferation of hematopoietic stem cells (HSCs) without induction of leukemogenesis, but requires frequent administration to overcome its short protein half-life (∼1 hour). We demonstrate here that HOXB4 protein levels are post-translationally regulated by the CUL4 ubiquitin ligase, and define the degradation signal sequence (degron) of HOXB4 required for CUL4-mediated destruction. Additional HOX paralogs share the conserved degron in the homeodomain and are also subject to CUL4-mediated degradation, indicating that CUL4 likely controls the stability of all HOX proteins. Moreover, we engineered a degradation-resistant HOXB4 that conferred a growth advantage over wild-type HOXB4 in myeloid progenitor cells. Direct transduction of recombinant degradation-resistant HOXB4 protein to human adult HSCs significantly enhanced their maintenance in a more primitive state both in vitro and in transplanted NOD/SCID/IL2R-γ(null) mice compared with transduction with wild-type HOXB4 protein. Our studies demonstrate the feasibility of engineering a stable HOXB4 variant to overcome a major technical hurdle in the ex vivo expansion of adult HSCs and early progenitors for human therapeutic use.


Asunto(s)
Células Madre Adultas/fisiología , Proliferación Celular , Proteínas Cullin/fisiología , Células Madre Hematopoyéticas/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Adulto , Células Madre Adultas/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Estudios de Factibilidad , Células HeLa , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Cultivo Primario de Células/métodos , Ingeniería de Proteínas , Proteolisis , Factores de Transcripción/genética , Factores de Transcripción/fisiología
10.
Top Curr Chem ; 362: 1-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25805144

RESUMEN

Glycoproteins are an important class of naturally occurring biomolecules which play a pivotal role in many biological processes. They are biosynthesized as complex mixtures of glycoforms through post-translational protein glycosylation. This fact, together with the challenges associated with producing them in homogeneous form, has hampered detailed structure-function studies of glycoproteins as well as their full exploitation as potential therapeutic agents. By contrast, chemical synthesis offers the unique opportunity to gain access to homogeneous glycoprotein samples for rigorous biological evaluation. Herein, we review recent methods for the assembly of complex glycopeptides and glycoproteins and present several examples from our laboratory towards the total chemical synthesis of clinically relevant glycosylated proteins that have enabled synthetic access to full-length homogeneous glycoproteins.


Asunto(s)
Glicoproteínas/síntesis química , Glicosilación , Estructura Molecular , Ingeniería de Proteínas
11.
Nat Chem Biol ; 9(12): 840-848, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24161946

RESUMEN

Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Leucemia , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Células Madre Hematopoyéticas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lovastatina/farmacología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/fisiología
12.
J Oral Pathol Med ; 44(8): 591-601, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25529330

RESUMEN

BACKGROUND: Areca nut chewing is associated with oral submucous fibrosis (OSF). Raised vascular basic fibroblast growth factor may induce fibrosis. Arecoline is a muscarinic alkaloid in areca nut, which we earlier reported causes injury and necrosis of human endothelium. MATERIALS AND METHODS: Human umbilical vein endothelial cells were exposed to arecoline with or without tumor necrosis factor-α, and separately to acetylcholine, muscarine, or nicotine. Protein levels of basic fibroblast growth factor, as well as the inflammatory cytokines: granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor, and Interleukins-6, 1-α and 1-ß, were determined by enzyme-linked immunosorbent assay. mRNA levels were established by real-time reverse transcription polymerase chain reaction. RESULTS: Basic fibroblast growth factor was released into the culture medium at arecoline levels causing necrosis (P < 0.05). This contrasted with an opposite effect of arecoline on levels of the inflammatory cytokines (P < 0.05). Tumor necrosis factor-α increased IL-6 and granulocyte-macrophage colony stimulated factor, but arecoline reduced this stimulated expression (P < 0.05). Arecoline had no effect on mRNA for basic fibroblast growth factor, although there was reduced mRNA for the separate inflammatory cytokines studied. The effect of acetylcholine, muscarine, and nicotine was minimal and dissimilar to that of arecoline. CONCLUSIONS: Data raise the possibility that arecoline-induced, vascular basic fibroblast growth factor contributes to OSF, by combining increased growth factor expression with endothelial necrosis, and thus driving fibroblast proliferation.


Asunto(s)
Arecolina/farmacología , Citocinas/biosíntesis , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Acetilcolina/farmacología , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática/métodos , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Humanos , Interleucina-1/biosíntesis , Interleucina-6/biosíntesis , Muscarina/farmacología , Nicotina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Venas Umbilicales
13.
Exp Cell Res ; 323(1): 178-188, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24468420

RESUMEN

Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells.


Asunto(s)
Transporte Biológico/fisiología , Comunicación Celular/fisiología , Exosomas/metabolismo , Microdominios de Membrana/metabolismo , Mesotelioma/metabolismo , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Nanotubos , Transducción de Señal , Microambiente Tumoral
14.
Proc Natl Acad Sci U S A ; 109(34): E2276-83, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22652566

RESUMEN

Most gastrointestinal stromal tumors (GISTs) harbor a gain-of-function mutation in the Kit receptor. GIST patients treated with the tyrosine kinase inhibitor imatinib frequently develop imatinib resistance as a result of second-site Kit mutations. To investigate the consequences of second-site Kit mutations on GIST development and imatinib sensitivity, we engineered a mouse model carrying in the endogenous Kit locus both the Kit(V558Δ) mutation found in a familial case of GIST and the Kit(T669I) (human KIT(T670I)) "gatekeeper" mutation found in imatinib-resistant GIST patients. Similar to Kit(V558/+) mice, Kit(V558;T669I/+) mice developed gastric and colonic interstitial cell of Cajal hyperplasia as well as cecal GIST. In contrast to the single-mutant Kit(V558/+) control mice, treatment of the Kit(V558;T669I/+) mice with either imatinib or dasatinib failed to inhibit oncogenic Kit signaling and GIST growth. However, this resistance could be overcome by treatment of Kit(V558;T669I/+) mice with sunitinib or sorafenib. Although tumor lesions were smaller in Kit(V558;T669I/+) mice than in single-mutant mice, both interstitial cell of Cajal hyperplasia and mast cell hyperplasia were exacerbated in Kit(V558;T669I/+) mice. Strikingly, the Kit(V558;T669I/+) mice developed a pronounced polycythemia vera-like erythrocytosis in conjunction with microcytosis. This mouse model should be useful for preclinical studies of drug candidates designed to overcome imatinib resistance in GIST and to investigate the consequences of oncogenic KIT signaling in hematopoietic as well as other cell lineages.


Asunto(s)
Eritrocitos/citología , Tumores del Estroma Gastrointestinal/genética , Mutación , Piperazinas/farmacología , Policitemia/genética , Proteínas Proto-Oncogénicas c-kit/genética , Pirimidinas/farmacología , Animales , Antineoplásicos/farmacología , Benzamidas , Linaje de la Célula , Dasatinib , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Resistencia a Antineoplásicos/genética , Exones , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Mesilato de Imatinib , Ratones , Fenotipo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Tiazoles/farmacología
15.
Blood ; 120(5): 1095-106, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22718837

RESUMEN

Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Factores Reguladores del Interferón/genética , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis/genética , Ácidos Borónicos/administración & dosificación , Ácidos Borónicos/farmacología , Bortezomib , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Citotoxinas/administración & dosificación , Citotoxinas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazinas/administración & dosificación , Pirazinas/farmacología , Especificidad por Sustrato , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Stem Cells ; 31(8): 1683-95, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23681919

RESUMEN

The KIT receptor tyrosine kinase has important roles in hematopoiesis. We have recently produced a mouse model for imatinib resistant gastrointestinal stromal tumor (GIST) carrying the Kit(V558Δ) and Kit(T669I) (human KIT(T670I) ) mutations found in imatinib-resistant GIST. The Kit(V558Δ;T669I/+) mice developed microcytic erythrocytosis with an increase in erythroid progenitor numbers, a phenotype previously seen only in mouse models of polycythemia vera with alterations in Epo or Jak2. Significantly, the increased hematocrit observed in Kit(V558Δ;T669I/+) mice normalized upon splenectomy. In accordance with increased erythroid progenitors, myeloerythroid progenitor numbers were also elevated in the Kit(V558Δ;T669I/+) mice. Hematopoietic stem cell (HSC) numbers in the bone marrow (BM) of Kit(V558Δ;T669I/+) mice were unchanged in comparison to wild-type mice. However, increased HSC numbers were observed in fetal livers and the spleen and peripheral blood of adult Kit(V558Δ;T669I/+) mice. Importantly, HSC from Kit(V558Δ;T669I/+) BM had a competitive advantage over wild-type HSC. In response to 5-fluorouracil treatment, elevated numbers of dividing Lin(-) Sca(+) cells were found in the Kit(V558Δ;T669I/+) BM compared to wild type. Our study demonstrates that signaling from the Kit(V558Δ;T669I/+) receptor has important consequences in hematopoiesis enhancing HSC self-renewal and resulting in increased erythropoiesis.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Modelos Animales de Enfermedad , Células Eritroides/citología , Células Eritroides/metabolismo , Femenino , Fluorouracilo/farmacología , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/genética , Transducción de Señal
17.
Stem Cells ; 31(9): 1992-2002, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23857717

RESUMEN

Activation of the human embryonic stem cell (hESC) signature genes has been observed in various epithelial cancers. In this study, we found that the hESC signature is selectively induced in the airway basal stem/progenitor cell population of healthy smokers (BC-S), with a pattern similar to that activated in all major types of human lung cancer. We further identified a subset of 6 BC-S hESC genes, whose coherent overexpression in lung adenocarcinoma (AdCa) was associated with reduced lung function, poorer differentiation grade, more advanced tumor stage, remarkably shorter survival, and higher frequency of TP53 mutations. BC-S shared with hESC and a considerable subset of lung carcinomas a common TP53 inactivation molecular pattern which strongly correlated with the BC-S hESC gene expression. These data provide transcriptome-based evidence that smoking-induced reprogramming of airway BC toward the hESC-like phenotype might represent a common early molecular event in the development of aggressive lung carcinomas in humans.


Asunto(s)
Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pulmón/patología , Fumar/genética , Fumar/patología , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Epitelio/metabolismo , Epitelio/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/metabolismo , Ratones , Análisis Multivariante , Fenotipo , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/metabolismo
18.
Respir Res ; 15: 94, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25248511

RESUMEN

BACKGROUND: Aging involves multiple biologically complex processes characterized by a decline in cellular homeostasis over time leading to a loss and impairment of physiological integrity and function. Specific cellular hallmarks of aging include abnormal gene expression patterns, shortened telomeres and associated biological dysfunction. Like all organs, the lung demonstrates both physiological and structural changes with age that result in a progressive decrease in lung function in healthy individuals. Cigarette smoking accelerates lung function decline over time, suggesting smoking accelerates aging of the lung. Based on this data, we hypothesized that cigarette smoking accelerates the aging of the small airway epithelium, the cells that take the initial brunt of inhaled toxins from the cigarette smoke and one of the primary sites of pathology associated with cigarette smoking. METHODS: Using the sensitive molecular parameters of aging-related gene expression and telomere length, the aging process of the small airway epithelium was assessed in age matched healthy nonsmokers and healthy smokers with no physical manifestation of lung disease or abnormalities in lung function. RESULTS: Analysis of a 73 gene aging signature demonstrated that smoking significantly dysregulates 18 aging-related genes in the small airway epithelium. In an independent cohort of male subjects, smoking significantly reduced telomere length in the small airway epithelium of smokers by 14% compared to nonsmokers. CONCLUSION: These data provide biologic evidence that smoking accelerates aging of the small airway epithelium.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Humo/efectos adversos , Fumar/efectos adversos , Adulto , Estudios de Casos y Controles , Senescencia Celular/genética , Células Epiteliales/química , Células Epiteliales/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , Mucosa Respiratoria/química , Mucosa Respiratoria/patología , Fumar/genética , Fumar/patología , Telómero/genética , Acortamiento del Telómero
19.
Gynecol Oncol ; 135(2): 325-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25108232

RESUMEN

RATIONALE: Anti-angiogenesis therapies such as bevacizumab, the monoclonal antibody to vascular endothelial growth factor (VEGF), have been used against ovarian cancer, but transient and low peritoneal drug levels are likely a factor in treatment failure. We hypothesized that a single administration of adeno-associated virus (AAV)-mediated intraperitoneal expression of bevacizumab would direct persistent expression and suppress growth and metastasis of ovarian cancer. METHODS: AAVrh.10BevMab, a rhesus serotype 10 adeno-associated viral vector coding for bevacizumab, was evaluated for the capacity of a single intraperitoneal administration to persistently suppress peritoneal tumor growth in an intraperitoneal model of ovarian carcinomatosis with human ovarian cancer cells in nude immunodeficient mice. RESULTS: The data demonstrates that AAVrh10.BevMab mediates persistent and high levels of bevacizumab in the peritoneal cavity following a single intraperitoneal administration in mice. In AAVrh10.BevMab treated A2780 human ovarian cancer-bearing mice, tumor growth was significantly suppressed (p<0.05) and the area of blood vessels in the tumor was decreased (p<0.04). Survival of mice with A2780 xenografts or SK-OV3 xenografts was greatly prolonged in the presence of AAVrh10.BevMab (p<0.001). Administration of AAVrh10.BevMab 4days after A2780-luciferase cell implantation reduced tumor growth (p<0.01) and increased mouse survival (p<0.0001). Combination of AAVrh10.BevMab with cytotoxic reagents paclitaxel or topotecan proved to be more effective in increasing survival than treatment with cytotoxic reagent alone. CONCLUSION: A single administration of AAVrh10.BevMab provides sustained and high local expression of bevacizumab in the peritoneal cavity, and significantly suppresses peritoneal carcinomatosis and increases survival in an ovarian cancer murine model.


Asunto(s)
Inhibidores de la Angiogénesis/genética , Anticuerpos Monoclonales Humanizados/genética , Carcinoma/patología , Proliferación Celular/genética , Dependovirus/genética , Terapia Genética/métodos , Neoplasias Ováricas/patología , Carga Tumoral/genética , Animales , Bevacizumab , Línea Celular Tumoral , Femenino , Vectores Genéticos , Humanos , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Proc Natl Acad Sci U S A ; 108(37): 15074-8, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21808037

RESUMEN

Migrastatin is a biologically active natural product isolated from Streptomyces that has been shown to inhibit tumor cell migration. Upon completion of the first total synthesis of migrastatin, a number of structurally simplified analogs were prepared. Following extensive in vitro screening, a new generation of analogs was identified that demonstrates substantially higher levels of in vitro inhibitory activity, stability and synthetic accessibility when compared to the parent natural product. Herein, we describe two promising ether-derivative analogs, the migrastatin core ether (ME) and the carboxymethyl-ME (CME), which exhibit high efficacy in blocking tumor cell migration and metastasis in lung cancer. These compounds show an in vitro migration inhibition in the micromolar range (IC(50): ME 1.5 to 8.2 µM, CME 0.5 to 5 µM). In a human small-cell lung carcinoma (SCLC) primary xenograft model, ME and CME compounds were found to be highly potent in inhibiting overall metastasis even at the lowest dosage used (degree of inhibition: 96.2% and 99.3%, respectively). Together these very encouraging findings suggest that these analogs have promise as potent antimetastatic agents in lung cancer.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Macrólidos/síntesis química , Macrólidos/uso terapéutico , Metástasis de la Neoplasia/tratamiento farmacológico , Piperidonas/síntesis química , Piperidonas/uso terapéutico , Animales , Línea Celular Tumoral , Movimiento Celular , Éteres/síntesis química , Éteres/química , Humanos , Macrólidos/química , Masculino , Ratones , Metástasis de la Neoplasia/patología , Piperidonas/química , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA