Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762126

RESUMEN

Dopamine is synthesized in the nervous system where it acts as a neurotransmitter. Dopamine is also synthesized in a number of peripheral organs as well as in several types of cells and has organ-specific functions and, as demonstrated more recently, is involved in the regulation of the immune response and inflammatory reaction. In particular, the renal dopaminergic system is very important in the regulation of sodium transport and blood pressure and is particularly sensitive to stimuli that cause oxidative stress and inflammation. This review is focused on how dopamine is synthesized in organs and tissues and the mechanisms by which dopamine and its receptors exert their effects on the inflammatory response.


Asunto(s)
Dopamina , Inflamación , Humanos , Presión Sanguínea , Transporte Iónico , Radiofármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
2.
Sci Rep ; 14(1): 15407, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965251

RESUMEN

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Asunto(s)
Comunicación Autocrina , Presión Sanguínea , AMP Cíclico , Oligopéptidos , Transducción de Señal , Animales , Humanos , Ratones , AMP Cíclico/metabolismo , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Riñón/metabolismo , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA