Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Physiol Rev ; 98(4): 2453-2475, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156497

RESUMEN

The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.


Asunto(s)
Epigénesis Genética/genética , Epigénesis Genética/fisiología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Corazón/crecimiento & desarrollo , Animales , Epigenómica/métodos , Feto/fisiología , Humanos
2.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958548

RESUMEN

Cornelia de Lange Syndrome (CdLS) patients, who frequently carry a mutation in NIPBL, present an increased incidence of outflow tract (OFT)-related congenital heart defects (CHDs). Nipbl+/- mice recapitulate a number of phenotypic traits of CdLS patients, including a small body size and cardiac defects, but no study has specifically focused on the valves. Here, we show that adult Nipbl+/- mice present aortic valve thickening, a condition that has been associated with stenosis. During development, we observed that OFT septation and neural crest cell condensation was delayed in Nipbl+/- embryos. However, we did not observe defects in the deployment of the main lineages contributing to the semilunar valves. Indeed, endocardial endothelial-to-mesenchymal transition (EndMT), analysed via outflow tract explants, and neural crest migration, analysed via genetic lineage tracing, did not significantly differ in Nipbl+/- mice and their wild-type littermates. Our study provides the first direct evidence for valve formation defects in Nipbl+/- mice and points to specific developmental defects as an origin for valve disease in patients.


Asunto(s)
Proteínas de Ciclo Celular , Síndrome de Cornelia de Lange , Cardiopatías Congénitas , Animales , Humanos , Ratones , Válvula Aórtica , Proteínas de Ciclo Celular/genética , Síndrome de Cornelia de Lange/genética , Haploinsuficiencia , Cardiopatías Congénitas/genética , Mutación
3.
Circ Res ; 126(10): 1330-1342, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32175811

RESUMEN

RATIONALE: Fibro-fatty infiltration of subepicardial layers of the atrial wall has been shown to contribute to the substrate of atrial fibrillation. OBJECTIVE: Here, we examined if the epicardium that contains multipotent cells is involved in this remodeling process. METHODS AND RESULTS: One hundred nine human surgical right atrial specimens were evaluated. There was a relatively greater extent of epicardial thickening and dense fibro-fatty infiltrates in atrial tissue sections from patients aged over 70 years who had mitral valve disease or atrial fibrillation when compared with patients aged less than 70 years with ischemic cardiomyopathy as indicated using logistic regression adjusted for age and gender. Cells coexpressing markers of epicardial progenitors and fibroblasts were detected in fibro-fatty infiltrates. Such epicardial remodeling was reproduced in an experimental model of atrial cardiomyopathy in rat and in Wilms tumor 1 (WT1)CreERT2/+;ROSA-tdT+/- mice. In the latter, genetic lineage tracing demonstrated the epicardial origin of fibroblasts within fibro-fatty infiltrates. A subpopulation of human adult epicardial-derived cells expressing PDGFR (platelet-derived growth factor receptor)-α were isolated and differentiated into myofibroblasts in the presence of Ang II (angiotensin II). Furthermore, single-cell RNA-sequencing analysis identified several clusters of adult epicardial-derived cells and revealed their specification from adipogenic to fibrogenic cells in the rat model of atrial cardiomyopathy. CONCLUSIONS: Epicardium is reactivated during the formation of the atrial cardiomyopathy. Subsets of adult epicardial-derived cells, preprogrammed towards a specific cell fate, contribute to fibro-fatty infiltration of subepicardium of diseased atria. Our study reveals the biological basis for chronic atrial myocardial remodeling that paves the way of atrial fibrillation.


Asunto(s)
Tejido Adiposo/patología , Fibrilación Atrial/etiología , Remodelación Atrial , Cardiomiopatías/complicaciones , Atrios Cardíacos/patología , Miocardio/patología , Pericardio/patología , Potenciales de Acción , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo/metabolismo , Anciano , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Linaje de la Célula , Modelos Animales de Enfermedad , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Frecuencia Cardíaca , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Pericardio/metabolismo , Pericardio/fisiopatología , Ratas Wistar , Células Madre/metabolismo , Células Madre/patología , Proteínas WT1/genética , Proteínas WT1/metabolismo
4.
Circ Res ; 122(4): 583-590, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29269349

RESUMEN

RATIONALE: Myocardial infarction is a major cause of adult mortality worldwide. The origin(s) of cardiac fibroblasts that constitute the postinfarct scar remain controversial, in particular the potential contribution of bone marrow lineages to activated fibroblasts within the scar. OBJECTIVE: The aim of this study was to establish the origin(s) of infarct fibroblasts using lineage tracing and bone marrow transplants and a robust marker for cardiac fibroblasts, the Collagen1a1-green fluorescent protein reporter. METHODS AND RESULTS: Using genetic lineage tracing or bone marrow transplant, we found no evidence for collagen-producing fibroblasts derived from hematopoietic or bone marrow lineages in hearts subjected to permanent left anterior descending coronary artery ligation. In fact, fibroblasts within the infarcted area were largely of epicardial origin. Intriguingly, collagen-producing fibrocytes from hematopoietic lineages were observed attached to the epicardial surface of infarcted and sham-operated hearts in which a suture was placed around the left anterior descending coronary artery. CONCLUSIONS: In this controversial field, our study demonstrated that the vast majority of infarct fibroblasts were of epicardial origin and not derived from bone marrow lineages, endothelial-to-mesenchymal transition, or blood. We also noted the presence of collagen-producing fibrocytes on the epicardial surface that resulted at least in part from the surgical procedure.


Asunto(s)
Células de la Médula Ósea/citología , Linaje de la Célula , Infarto del Miocardio/terapia , Miofibroblastos/citología , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/efectos adversos , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Pericardio/citología
5.
Proc Natl Acad Sci U S A ; 114(5): E771-E780, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096344

RESUMEN

The abundance of epicardial adipose tissue (EAT) is associated with atrial fibrillation (AF), the most frequent cardiac arrhythmia. However, both the origin and the factors involved in EAT expansion are unknown. Here, we found that adult human atrial epicardial cells were highly adipogenic through an epithelial-mesenchymal transition both in vitro and in vivo. In a genetic lineage tracing the WT1CreERT2+/-RosatdT+/- mouse model subjected to a high-fat diet, adipocytes of atrial EAT derived from a subset of epicardial progenitors. Atrial myocardium secretome induces the adipogenic differentiation of adult mesenchymal epicardium-derived cells by modulating the balance between mesenchymal Wingless-type Mouse Mammary Tumor Virus integration site family, member 10B (Wnt10b)/ß-catenin and adipogenic ERK/MAPK signaling pathways. The adipogenic property of the atrial secretome was enhanced in AF patients. The atrial natriuretic peptide secreted by atrial myocytes is a major adipogenic factor operating at a low concentration by binding to its natriuretic peptide receptor A (NPRA) receptor and, in turn, by activating a cGMP-dependent pathway. Hence, our data indicate cross-talk between EAT expansion and mechanical function of the atrial myocardium.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Factor Natriurético Atrial/metabolismo , Atrios Cardíacos/metabolismo , Pericardio/metabolismo , Adipocitos/citología , Anciano , Animales , Células Cultivadas , Dieta Alta en Grasa , Transición Epitelial-Mesenquimal , Femenino , Atrios Cardíacos/citología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Pericardio/citología , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
7.
Stem Cells ; 34(1): 34-43, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26352327

RESUMEN

Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials.


Asunto(s)
Insuficiencia Cardíaca/terapia , Miocardio/citología , Células Madre Pluripotentes/citología , Trasplante de Células Madre , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Humanos
8.
PLoS Genet ; 10(2): e1004114, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586179

RESUMEN

Recent interest has focused on the importance of the nucleus and associated nucleoskeleton in regulating changes in cardiac gene expression in response to biomechanical load. Mutations in genes encoding proteins of the inner nuclear membrane and nucleoskeleton, which cause cardiomyopathy, also disrupt expression of a biomechanically responsive gene program. Furthermore, mutations in the outer nuclear membrane protein Nesprin 1 and 2 have been implicated in cardiomyopathy. Here, we identify for the first time a role for the outer nuclear membrane proteins, Nesprin 1 and Nesprin 2, in regulating gene expression in response to biomechanical load. Ablation of both Nesprin 1 and 2 in cardiomyocytes, but neither alone, resulted in early onset cardiomyopathy. Mutant cardiomyocytes exhibited altered nuclear positioning, shape, and chromatin positioning. Loss of Nesprin 1 or 2, or both, led to impairment of gene expression changes in response to biomechanical stimuli. These data suggest a model whereby biomechanical signals are communicated from proteins of the outer nuclear membrane, to the inner nuclear membrane and nucleoskeleton, to result in changes in gene expression required for adaptation of the cardiomyocyte to changes in biomechanical load, and give insights into etiologies underlying cardiomyopathy consequent to mutations in Nesprin 1 and 2.


Asunto(s)
Cardiomiopatías/genética , Miocardio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Animales , Fenómenos Biomecánicos , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Núcleo Celular/metabolismo , Proteínas del Citoesqueleto , Regulación de la Expresión Génica , Humanos , Ratones , Mutación , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(32): E3297-305, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074909

RESUMEN

Hepatic myofibroblasts are activated in response to chronic liver injury of any etiology to produce a fibrous scar. Despite extensive studies, the origin of myofibroblasts in different types of fibrotic liver diseases is unresolved. To identify distinct populations of myofibroblasts and quantify their contribution to hepatic fibrosis of two different etiologies, collagen-α1(I)-GFP mice were subjected to hepatotoxic (carbon tetrachloride; CCl4) or cholestatic (bile duct ligation; BDL) liver injury. All myofibroblasts were purified by flow cytometry of GFP(+) cells and then different subsets identified by phenotyping. Liver resident activated hepatic stellate cells (aHSCs) and activated portal fibroblasts (aPFs) are the major source (>95%) of fibrogenic myofibroblasts in these models of liver fibrosis in mice. As previously reported using other methodologies, hepatic stellate cells (HSCs) are the major source of myofibroblasts (>87%) in CCl4 liver injury. However, aPFs are a major source of myofibroblasts in cholestatic liver injury, contributing >70% of myofibroblasts at the onset of injury (5 d BDL). The relative contribution of aPFs decreases with progressive injury, as HSCs become activated and contribute to the myofibroblast population (14 and 20 d BDL). Unlike aHSCs, aPFs respond to stimulation with taurocholic acid and IL-25 by induction of collagen-α1(I) and IL-13, respectively. Furthermore, BDL-activated PFs express high levels of collagen type I and provide stimulatory signals to HSCs. Gene expression analysis identified several novel markers of aPFs, including a mesothelial-specific marker mesothelin. PFs may play a critical role in the pathogenesis of cholestatic liver fibrosis and, therefore, serve as an attractive target for antifibrotic therapy.


Asunto(s)
Cirrosis Hepática/patología , Hígado/patología , Miofibroblastos/patología , Animales , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colestasis/complicaciones , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Mesotelina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miofibroblastos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vitamina A/metabolismo
10.
J Mol Cell Cardiol ; 91: 1-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26748307

RESUMEN

Cardiac fibroblasts produce the extracellular matrix (ECM) scaffold within which the various cellular components of the heart are organized. As well as providing structural support, it is becoming evident that the quality and quantity of ECM is a key factor for determining cardiac cell behavior during development and in pathological contexts such as heart failure involving fibrosis. Cardiac fibroblasts have long remained a poorly characterized cardiac lineage. Well characterized markers are now paving the way for a better understanding of the roles of these cells in various developmental and disease contexts. Notably, the relevance of processes including endothelial-tomesenchymal transition and the recruitment of circulating fibroblast progenitors in heart failure has been challenged. This review describes the latest findings on cardiac fibroblast markers and developmental origins, and discusses their importance in myocardial remodeling. Effective modulation of cardiac fibroblast activity would likely contribute to successful treatment of various cardiac disorders.


Asunto(s)
Linaje de la Célula/fisiología , Fibroblastos/patología , Insuficiencia Cardíaca/patología , Miocardio/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Receptores con Dominio Discoidina , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Miocardio/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores Mitogénicos/genética , Receptores Mitogénicos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
11.
Genesis ; 53(5): 337-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25950518

RESUMEN

Heart valve development begins with the endothelial-to-mesenchymal transition (EMT) of endocardial cells. Although lineage studies have demonstrated contributions from cardiac neural crest and epicardium to semilunar and atrioventricular (AV) valve formation, respectively, most valve mesenchyme derives from the endocardial EMT. Specific Cre mouse lines for fate-mapping analyses of valve endocardial cells are limited. Msx1 displayed expression in AV canal endocardium and cushion mesenchyme between E9.5 and E11.5, when EMT is underway. Additionally, previous studies have demonstrated that deletion of Msx1 and its paralog Msx2 results in hypoplastic AV cushions and impaired endocardial signaling. A knock-in tamoxifen-inducible Cre line was recently generated (Msx1CreERT2) and characterized during embryonic development and after birth, and was shown to recapitulate the endogenous Msx1 expression pattern. Here, we further analyze this knock-in allele and track the Msx1-expressing cells and their descendants during cardiac development with a particular focus on their contribution to the valves and their precursors. Thus, Msx1CreERT2 mice represent a useful model for lineage tracing and conditional gene manipulation of endocardial and mesenchymal cushion cells essential to understand mechanisms of valve development and remodeling.


Asunto(s)
Alelos , Técnicas de Sustitución del Gen , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Integrasas/genética , Factor de Transcripción MSX1/genética , Receptores de Estrógenos/genética , Animales , Endocardio/enzimología , Endocardio/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación del Desarrollo de la Expresión Génica , Integrasas/metabolismo , Factor de Transcripción MSX1/metabolismo , Ratones , Organogénesis/genética , Receptores de Estrógenos/metabolismo
12.
Circ Res ; 112(3): e25-8, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23371905

RESUMEN

RATIONALE: Rossdeutsch et al describe a requirement for thymosin ß4 (Tß4) in vascular development. Impaired mural cell migration, differentiation, partial embryonic lethality, and hemorrhaging were observed after analysis of 2 lines of mice, one of which was germline null for Tß4 and another in which Tß4 was knocked down by endothelial-specific expression of Tß4 short hairpin RNA. These data are in direct contrast to our published global and cardiac-specific Tß4-knockout lines. Thus, the role of Tß4 needs to be clarified to understand its importance in cardiovascular development. OBJECTIVE: To investigate and clarify the role of Tß4 in vascular smooth muscle cell development and vessel stability. METHODS AND RESULTS: Examination of Tß4 global knockouts did not demonstrate embryonic hemorrhaging, altered mural cell development, or lethality. Endothelial-specific knockouts also did not exhibit any embryonic lethality and were viable to adulthood. CONCLUSIONS: Analysis of our Tß4 global and cardiac- and endothelial-specific knockout models demonstrated that Tß4 is dispensable for embryonic viability and vascular development.


Asunto(s)
Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Timosina/metabolismo , Animales , Biomarcadores/metabolismo , Supervivencia Celular , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/embriología , Fenotipo , Timosina/deficiencia , Timosina/genética
13.
Proc Natl Acad Sci U S A ; 109(24): 9448-53, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22566629

RESUMEN

Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl(4)) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl(4)- and alcohol-induced liver fibrosis using Cre-LoxP-based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.


Asunto(s)
Cirrosis Hepática/patología , Miofibroblastos/citología , Traslado Adoptivo , Animales , Colágeno Tipo I/metabolismo , Cirrosis Hepática/metabolismo , Ratones , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Fenotipo , Tamoxifeno/farmacología
14.
Circ Res ; 110(3): 456-64, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22158707

RESUMEN

RATIONALE: Thymosin beta 4 (Tß4) is a 43-amino acid factor encoded by an X-linked gene. Recent studies have suggested that Tß4 is a key factor in cardiac development, growth, disease, epicardial integrity, and blood vessel formation. Cardiac-specific short hairpin (sh)RNA knockdown of tß4 has been reported to result in embryonic lethality at E14.5-16.5, with severe cardiac and angiogenic defects. However, this shRNA tß4-knockdown model did not completely abrogate Tß4 expression. To completely ablate Tß4 and to rule out the possibility of off-target effects associated with shRNA gene silencing, further studies of global or cardiac-specific knockouts are critical. OBJECTIVE: We examined the role of Tß4 in developing and adult heart through global and cardiac specific tß4-knockout mouse models. METHODS AND RESULTS: Global tß4-knockout mice were born at mendelian ratios and exhibited normal heart and blood vessel formation. Furthermore, in adult global tß4-knockout mice, cardiac function, capillary density, expression of key cardiac fetal and angiogenic genes, epicardial marker expression, and extracellular matrix deposition were indistinguishable from that of controls. Tissue-specific tß4-deficient mice, generated by crossing tß4-floxed mice to Nkx2.5-Cre and αMHC-Cre, were also found to have no phenotype. CONCLUSIONS: We conclude that Tß4 is dispensable for embryonic viability, heart development, coronary vessel development, and adult myocardial function.


Asunto(s)
Corazón/embriología , Corazón/fisiología , Timosina/fisiología , Animales , Vasos Coronarios/embriología , Vasos Coronarios/fisiología , Desarrollo Embrionario/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Neovascularización Fisiológica/fisiología , ARN Interferente Pequeño/farmacología , Timosina/deficiencia , Timosina/genética
15.
Front Cell Dev Biol ; 12: 1388378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699159

RESUMEN

In heart disease patients, myocyte loss or malfunction invariably leads to fibrosis, involving the activation and accumulation of cardiac fibroblasts that deposit large amounts of extracellular matrix. Apart from the vital replacement fibrosis that follows myocardial infarction, ensuring structural integrity of the heart, cardiac fibrosis is largely considered to be maladaptive. Much work has focused on signaling pathways driving the fibrotic response, including TGF-ß signaling and biomechanical strain. However, currently there are very limited options for reducing cardiac fibrosis, with most patients suffering from chronic fibrosis. The adult heart has very limited regenerative capacity. However, cardiac regeneration has been reported in humans perinatally, and reproduced experimentally in neonatal mice. Furthermore, model organisms such as the zebrafish are able to fully regenerate their hearts following massive cardiac damage into adulthood. Increasing evidence points to a transient immuno-fibrotic response as being key for cardiac regeneration to occur. The mechanisms at play in this context are changing our views on fibrosis, and could be leveraged to promote beneficial remodeling in heart failure patients. This review summarizes our current knowledge of fibroblast properties associated with the healthy, failing or regenerating heart. Furthermore, we explore how cardiac fibroblast activity could be targeted to assist future therapeutic approaches.

16.
J Mol Cell Biol ; 14(10)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36271843

RESUMEN

Understanding how certain animals are capable of regenerating their hearts will provide much needed insights into how this process can be induced in humans in order to reverse the damage caused by myocardial infarction. Currently, it is becoming increasingly evident that cardiac interstitial cells play crucial roles during cardiac regeneration. To understand how interstitial cells behave during this process, we performed single-cell RNA sequencing of regenerating zebrafish hearts. Using a combination of immunohistochemistry, chemical inhibition, and novel transgenic animals, we were able to investigate the role of cell type-specific mechanisms during cardiac regeneration. This approach allowed us to identify a number of important regenerative processes within the interstitial cell populations. Here, we provide detailed insight into how interstitial cells behave during cardiac regeneration, which will serve to increase our understanding of how this process could eventually be induced in humans.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , Humanos , Pez Cebra , Animales Modificados Genéticamente , Proliferación Celular
18.
Mol Pharmacol ; 75(5): 1108-16, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19229040

RESUMEN

Cardiac function is regulated by many hormones and neurotransmitters that exert their physiological effects through the activation of G protein-coupled receptors (GPCRs). Identification of new GPCRs that might display a specific pattern of expression within the heart and differentially regulate specific cardiac functions represents an important issue for the development of new drugs. Indeed, highly targeted receptors represent only a small percentage of known GPCRs. Here, we quantified the expression of 395 endoGPCRs (all GPCRs excluding taste and odorant receptors) in male mouse right and left atria and ventricles by using high-throughput real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and focused on the 135 most highly expressed transcripts. No cardiac functional data are available for almost half of these receptors; therefore, linking GPCR expression patterns to cardiac function has allowed us to provide new insights into the possible function of some of these receptors. Indeed, ventricles and atria are both contractile; however, the latter, and especially the right atrium, are central to the generation and regulation of cardiac rhythm. Accordingly, the right atrium exhibited the most specific signature, whereas the majority of GPCRs found in ventricles were evenly expressed in both the right and left chambers. RT-PCR data were confirmed at the protein level for six selected transcripts. Furthermore, we provide new data showing that, as suggested by our repertoire, the metabotropic glutamate receptor 1b is expressed and is functional in ventricular cardiac myocytes. This is the first report describing GPCRs in the four cardiac chambers and may assist in the identification of therapeutic targets.


Asunto(s)
Miocardio/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Western Blotting , Calcio/metabolismo , Perfilación de la Expresión Génica , Glicina/análogos & derivados , Glicina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/análisis , Receptores de Glutamato Metabotrópico/genética , Resorcinoles/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Nat Commun ; 10(1): 1929, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028265

RESUMEN

Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish.


Asunto(s)
Células Endoteliales/patología , Proteínas Hedgehog/genética , Prolapso de la Válvula Mitral/patología , Válvula Mitral/patología , Células Madre Pluripotentes/patología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Embrión de Mamíferos , Endocardio/metabolismo , Endocardio/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/trasplante , Transición Epitelial-Mesenquimal/efectos de los fármacos , Factor de Transcripción GATA5/genética , Factor de Transcripción GATA5/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/terapia , Modelos Biológicos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Cultivo Primario de Células , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteína Wnt3A/farmacología
20.
Cell Stem Cell ; 20(3): 345-359.e5, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28111199

RESUMEN

Pericytes are widely believed to function as mesenchymal stem cells (MSCs), multipotent tissue-resident progenitors with great potential for regenerative medicine. Cultured pericytes isolated from distinct tissues can differentiate into multiple cell types in vitro or following transplantation in vivo. However, the cell fate plasticity of endogenous pericytes in vivo remains unclear. Here, we show that the transcription factor Tbx18 selectively marks pericytes and vascular smooth muscle cells in multiple organs of adult mouse. Fluorescence-activated cell sorting (FACS)-purified Tbx18-expressing cells behaved as MSCs in vitro. However, lineage-tracing experiments using an inducible Tbx18-CreERT2 line revealed that pericytes and vascular smooth muscle cells maintained their identity in aging and diverse pathological settings and did not significantly contribute to other cell lineages. These results challenge the current view of endogenous pericytes as multipotent tissue-resident progenitors and suggest that the plasticity observed in vitro or following transplantation in vivo arises from artificial cell manipulations ex vivo.


Asunto(s)
Células Madre Mesenquimatosas/citología , Especificidad de Órganos , Pericitos/citología , Adipocitos/citología , Envejecimiento/genética , Linaje de la Célula , Cicatriz/patología , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Integrasas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Desarrollo de Músculos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Neuronas/citología , Pericitos/metabolismo , Fenotipo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA