Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Prostate ; 75(3): 242-54, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25327687

RESUMEN

BACKGROUND: Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. METHODS: Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. RESULTS: Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. CONCLUSIONS: The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Androstenos/uso terapéutico , Antígenos de Superficie/inmunología , Glutamato Carboxipeptidasa II/inmunología , Inmunoconjugados/uso terapéutico , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/inmunología , Anticuerpos , Benzamidas , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Masculino , Nitrilos , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología
2.
Sci Total Environ ; 795: 148834, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252764

RESUMEN

Studies have demonstrated that SARS-CoV-2 RNA can be detected in the feces of infected individuals. This finding spurred investigation into using wastewater-based epidemiology (WBE) to monitor SARS-CoV-2 RNA and track the appearance and spread of COVID-19 in communities. SARS-CoV-2 is present at low levels in wastewater, making sample concentration a prerequisite for sensitive detection and utility in WBE. Whereas common methods for isolating viral genetic material are biased toward intact virus isolation, it is likely that a relatively low percentage of the total SARS-CoV-2 RNA genome in wastewater is contained within intact virions. Therefore, we hypothesized that a direct unbiased total nucleic acid(TNA) extraction method could overcome the cumbersome protocols, variability and low recovery rates associated with the former methods. This led to development of a simple, rapid, and modular alternative to existing purification methods. In an initial concentration step, chaotropic agents are added to raw sewage allowing binding of nucleic acid from free nucleoprotein complexes, partially intact, and intact virions to a silica matrix. The eluted nucleic acid is then purified using manual or semi-automated methods. RT-qPCR enzyme mixes were formulated that demonstrate substantial inhibitor resistance. In addition, multiplexed probe-based RT-qPCR assays detecting the N1, N2 (nucleocapsid) and E (envelope) gene fragments of SARS-CoV-2 were developed. The RT-qPCR assays also contain primers and probes to detect Pepper Mild Mottle Virus (PMMoV), a fecal indicator RNA virus present in wastewater, and an exogenous control RNA to measure effects of RT-qPCR inhibitors. Using this workflow, we monitored wastewater samples from three wastewater treatment plants (WWTP) in Dane County, Wisconsin. We also successfully sequenced a subset of samples to ensure compatibility with a SARS-CoV-2 amplicon panel and demonstrated the potential for SARS-CoV-2 variant detection. Data obtained here underscore the potential for wastewater surveillance of SARS-CoV-2 and other infectious agents in communities.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , ARN Viral , SARS-CoV-2
3.
PLoS One ; 7(4): e35351, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22545104

RESUMEN

Combinations of direct-acting anti-virals offer the potential to improve the efficacy, tolerability and duration of the current treatment regimen for hepatitis C virus (HCV) infection. Viral entry represents a distinct therapeutic target that has been validated clinically for a number of pathogenic viruses. To discover novel inhibitors of HCV entry, we conducted a high throughput screen of a proprietary small-molecule compound library using HCV pseudoviral particle (HCVpp) technology. We independently discovered and optimized a series of 1,3,5-triazine compounds that are potent, selective and non-cytotoxic inhibitors of HCV entry. Representative compounds fully suppress both cell-free virus and cell-to-cell spread of HCV in vitro. We demonstrate, for the first time, that long term treatment of an HCV cell culture with a potent entry inhibitor promotes sustained viral clearance in vitro. We have confirmed that a single amino acid variant, V719G, in the transmembrane domain of E2 is sufficient to confer resistance to multiple compounds from the triazine series. Resistance studies were extended by evaluating both the fusogenic properties and growth kinetics of drug-induced and natural amino acid variants in the HCVpp and HCV cell culture assays. Our results indicate that amino acid variations at position 719 incur a significant fitness penalty. Introduction of I719 into a genotype 1b envelope sequence did not affect HCV entry; however, the overall level of HCV replication was reduced compared to the parental genotype 1b/2a HCV strain. Consistent with these findings, I719 represents a significant fraction of the naturally occurring genotype 1b sequences. Importantly, I719, the most relevant natural polymorphism, did not significantly alter the susceptibility of HCV to the triazine compounds. The preclinical properties of these triazine compounds support further investigation of entry inhibitors as a potential novel therapy for HCV infection.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/uso terapéutico , Línea Celular , Farmacorresistencia Viral , Genotipo , Hepacivirus/genética , Hepatitis C/genética , Humanos , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Triazinas/química , Triazinas/farmacología , Triazinas/uso terapéutico , Proteínas del Envoltorio Viral/genética , Internalización del Virus/efectos de los fármacos
4.
Ann Plast Surg ; 55(1): 81-6; discussion 86, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15985796

RESUMEN

The treatment of diabetic wounds is a formidable clinical challenge. In this study, lentiviral vectors carrying the human platelet-derived growth factor B (PDGF-B) gene were used to treated diabetic mouse wounds. Full-thickness 2.0-cm x 2.0-cm excisional wounds were created on the dorsa of genetically diabetic C57BL/KsJ-m+/+Lepr(db) mice. Lentiviral vectors containing the PDGF-B gene were injected into the wound margins and base. Mice were killed at 14-, 21-, and 35-day intervals. Measurement of the residual epithelial gap showed a trend towards increased healing in lentiviral PDGF-treated wounds compared with untreated and saline-treated wounds at all time points. At 21 days, there was significantly increased healing in lentiviral PDGF-treated wounds (0.98+/-0.17 cm) compared with saline-treated wounds (1.22+/-0.30 cm; P<0.05). Immunohistochemistry for CD31 revealed significantly increased neovascularization in lentiviral PDGF-treated wounds compared with untreated and saline-treated wounds at 14 and 21 days (P<0.01). Picrosirius red staining demonstrated thicker and more highly organized collagen fibers in treated wounds compared with untreated and saline-treated wounds. Quantitative analysis of collagen content showed a 3.5-fold and 2.3-fold increase in lentiviral PDGF-treated wounds versus untreated and saline-treated wounds, respectively (P<0.01). Lentiviral gene therapy with PDGF-B can sustain diabetic wound healing over time and may possess promising potential in the clinical setting.


Asunto(s)
Diabetes Mellitus Experimental/genética , Terapia Genética/métodos , Proteínas Proto-Oncogénicas c-sis/farmacología , Cicatrización de Heridas/genética , Análisis de Varianza , Animales , Diabetes Mellitus Experimental/fisiopatología , Vectores Genéticos , Humanos , Técnicas para Inmunoenzimas , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA