Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 298(12): 102707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402445

RESUMEN

The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial ß-carrageenase and ß-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected ß-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 µM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 µM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This ß-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.


Asunto(s)
Chondrus , Rhodophyta , Chondrus/genética , Rhodophyta/genética , Polisacáridos , Glicósido Hidrolasas , Biología
2.
Sci Rep ; 10(1): 11498, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661246

RESUMEN

Chondrus crispus is a marine red alga with sulfated galactans, called carrageenans, in its extracellular matrix. Chondrus has a complex haplodiplontic life cycle, alternating between male and female gametophytes (n) and tetrasporophytes (2n). The Chondrus life cycle stages are isomorphic; however, a major phenotypic difference is that carrageenan composition varies significantly between the tetrasporophytes (mainly lambda-carrageenan) and the gametophytes (mainly kappa/iota-carrageenans). The disparity in carrageenan structures, which confer different chemical properties, strongly suggests differential regulation of carrageenan-active genes between the phases of the Chondrus life cycles. We used a combination of taxonomy, biochemistry and molecular biology to characterize the tetrasporophytes and male and female gametophytes from Chondrus individuals isolated from the rocky seashore off the northern coast of France. Transcriptomic analyses reveal differential gene expression of genes encoding several galactose-sulfurylases, carbohydrate-sulfotransferases, glycosyltransferases, and one family 16 glycoside hydrolase. Differential expression of carrageenan-related genes was found primarily between gametophytes and tetrasporophytes, but also between the male and female gametophytes. The differential expression of these multigenic genes provides a rare glimpse into cell wall biosynthesis in algae. Furthermore, it strongly supports that carrageenan metabolism holds an important role in the physiological differentiation between the isomorphic life cycle stages of Chondrus.


Asunto(s)
Carragenina/genética , Chondrus/genética , Receptores Inmunológicos/genética , Animales , Carragenina/metabolismo , Chondrus/crecimiento & desarrollo , Galactosa/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Estadios del Ciclo de Vida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA