Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurol Sci ; 42(5): 1933-1940, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32974798

RESUMEN

BACKGROUND: Lymphoma of the nervous system is rare and usually involves the brain, spinal cord, or peripheral nerves. Hence, it has varied clinical presentations, and correct diagnosis is often challenging. Incorrect diagnosis delays the appropriate treatment and affects prognosis. We report 5 patients with delayed diagnosis of lymphoma involving the central and/or peripheral nervous system, initially evaluated for other neurological diagnoses. We also discuss the challenge of diagnosis and appropriate testing. METHODS: Retrospective review of 2011-2019 records of patients with confirmed nervous system lymphoma diagnosed in a tertiary care medical center. RESULTS: We present 5 adult patients initially evaluated for inflammatory myelopathy, inflammatory lumbosacral plexopathy, atypical parkinsonism, and demyelinating disease of the CNS. Final diagnosis of the nervous system lymphoma was delayed by 4 to 18 months and was based on tissue biopsy in 4, and on CSF and bone marrow examination in 1 patient. CONCLUSIONS: Lymphoma may imitate various central and peripheral nervous system disorders. We suggest several red flags that indicate the need to consider lymphoma, including subacute but progressive symptomatic evolution, painful neurological deficit, unclear clinical diagnosis, and transient steroid responsiveness. Correct diagnosis often requires a combination of diagnostic tests, while pathology testing is crucial for early diagnosis and is strongly recommended in the appropriate clinical setting.


Asunto(s)
Linfoma , Adulto , Encéfalo , Errores Diagnósticos , Humanos , Linfoma/diagnóstico , Estudios Retrospectivos , Médula Espinal
2.
Neurooncol Adv ; 3(1): vdab019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33738450

RESUMEN

BACKGROUND: G lioblastoma (GBM) is associated with poor overall survival. Recently, we showed that androgen receptor (AR) protein is overexpressed in 56% of GBM specimens and AR antagonists induced dose-dependent death in several GBM cell lines and significantly reduced tumor growth and prolonged the lifespan of mice implanted with human GBM. 16ß-18F-fluoro-5α-dihydrotestosterone ([18F]-FDHT) is a positron emission tomography (PET) tracer used to detect AR expression in prostate and breast cancers. This study was aimed at exploring the ability of [18F]-FDHT-PET to detect AR expression in high-grade gliomas. METHODS: Twelve patients with suspected high-grade glioma underwent a regular workup and additional dynamic and static [18F]-FDHT-PET/CT. Visual and quantitative analyses of [18 F]-FDHT kinetics in the tumor and normal brain were performed. Mean and maximum (max) standardized uptake values (SUVs) were determined in selected volumes of interest. The patients had surgery or biopsy after PET/CT. AR protein was analyzed in the tumor samples by western blot. Fold change in AR expression was calculated by densitometry analysis. Correlation between imaging and AR protein samples was determined. RESULTS: In six of the 12 patients, [18 F]-FDHT uptake was significantly higher in the tumor than in the normal brain. These patients also had increased AR protein expression within the tumor. Pearson correlation coefficient analysis for the tumor-to-control normal brain uptake ratio in terms of SUVmean versus AR protein expression was positive and significant (R = 0.84; P = .002). CONCLUSION: [18 F]-FDHT-PET/CT could identify increased AR expression in high-grade glioma.

3.
EMBO Mol Med ; 13(10): e14554, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34486811

RESUMEN

This work employs adult polyglucosan body disease (APBD) models to explore the efficacy and mechanism of action of the polyglucosan-reducing compound 144DG11. APBD is a glycogen storage disorder (GSD) caused by glycogen branching enzyme (GBE) deficiency causing accumulation of poorly branched glycogen inclusions called polyglucosans. 144DG11 improved survival and motor parameters in a GBE knockin (Gbeys/ys ) APBD mouse model. 144DG11 reduced polyglucosan and glycogen in brain, liver, heart, and peripheral nerve. Indirect calorimetry experiments revealed that 144DG11 increases carbohydrate burn at the expense of fat burn, suggesting metabolic mobilization of pathogenic polyglucosan. At the cellular level, 144DG11 increased glycolytic, mitochondrial, and total ATP production. The molecular target of 144DG11 is the lysosomal membrane protein LAMP1, whose interaction with the compound, similar to LAMP1 knockdown, enhanced autolysosomal degradation of glycogen and lysosomal acidification. 144DG11 also enhanced mitochondrial activity and modulated lysosomal features as revealed by bioenergetic, image-based phenotyping and proteomics analyses. As an effective lysosomal targeting therapy in a GSD model, 144DG11 could be developed into a safe and efficacious glycogen and lysosomal storage disease therapy.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Enfermedades del Sistema Nervioso , Animales , Glucanos , Glucógeno , Ratones
4.
Oncotarget ; 9(28): 19980-19993, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29731997

RESUMEN

The median survival time of patients with glioblastoma is still poor (14.6 month), partly due to a lack of effective treatment. We have observed that androgen receptor (AR) is amplified in glioblastomas at the DNA, RNA and protein levels. The AR gene was amplified in 27% of glioblastoma specimens from men (n=22) and of 38.2% from women (n=21). AR-RNA was overexpressed (>2.5 fold) in 93% (n=30), and AR-protein was induced (>two fold) in 56% of the glioblastomas samples (n=16). Thirty percent of the glioblastomas (n=21) also expressed a constitutively active AR-splice-variant (AR-V7/AR3) lacking the Ligand-Binding-Domain. Following these findings, we examined the effect of pharmacological inhibition of androgen receptor in vitro and in vivo, as well as of genetic silencing of the receptor in glioblastoma cell lines. AR antagonists, induced concentration-dependent death in three glioblastoma cell lines, as well as in two glioma initiating cell lines. Silencing of AR expression by siRNA induced cell death in the three tested glioblastoma cell lines. Enzalutamide given orally to nude mice bearing subcutaneous human glioma xenografts resulted in a 72% reduction in tumor volume (p=0.0027). The presence of AR-V7/AR3 in glioblastoma, together with the present data showing that genetic silencing of the full length AR in cell lines and pharmacological inhibition of AR, induce GBM cell death in vivo and in vitro, point to the important role of AR in GBM survival and render a potential therapeutic target for this devastating disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA