RESUMEN
Epiphytic and rupicolous plants inhabit environments with limited water resources. Such plants commonly use Crassulacean Acid Metabolism (CAM), a photosynthetic pathway that accumulates organic acids in cell vacuoles at night, so reducing their leaf water potential and favouring water absorption. Foliar water uptake (FWU) aids plant survival during drought events in environments with high water deficits. We hypothesized that FWU represents a strategy employed by epiphytic and rupicolous orchids for water acquisition and that CAM will favour increased water absorption. We examined 6 epiphyte, 4 terrestrial and 6 rupicolous orchids that use C3 (n = 9) or CAM (n = 7) pathways. Five individuals per species were used to evaluate FWU, structural characteristics and leaf water balance. Rupicolous species with C3 metabolism had higher FWU than other species. FWU (Cmax and k) could be related to succulence, SLM and leaf RWC. The results indicated that high orchid leaf densities favoured FWU, as area available for water storage increases with leaf density. Structural characteristics linked to water storage (e.g. high RWC, succulence), on the other hand, could limit leaf water absorption by favouring high internal leaf water potentials. Epiphytic, rupicolous and terrestrial orchids showed FWU. Rupicolous species had high levels of FWU, probably through absorption from mist. However, succulence in plants with CAM appears to mitigate FWU.
Asunto(s)
Hojas de la Planta , Agua , Agua/metabolismo , Hojas de la Planta/metabolismo , Ecosistema , Fotosíntesis , Árboles/metabolismoRESUMEN
The galls induced by Ditylenchus gallaeformans (Nematoda) on leaves of Miconia albicans have unique features when compared to other galls. The nematode colonies are surrounded by nutritive tissues with promeristematic cells, capable of originating new emergences facing the larval chamber, and providing indeterminate growth to these galls. Considering enzyme activity as essential for the translocation of energetic molecules from the common storage tissue (CST) to the typical nutritive tissue (TNT), and the major occurrence of carbohydrates in nematode galls, it was expected that hormones would mediate sink strength relationships by activating enzymes in indeterminate growth regions of the galls. Histochemical, immunocytochemical and quantitative analyses were made in order to demonstrate sites of enzyme activity and hormones, and comparative levels of total soluble sugars, water soluble polysaccharides and starch. The source-sink status, via carbohydrate metabolism, is controlled by the major accumulation of cytokinins in totipotent nutritive cells and new emergences. Thus, reducing sugars, such as glucose and fructose, accumulate in the TNT, where they supply the energy for successive cycles of cell division and for nematode feeding. The histochemical detection of phosphorylase and invertase activities indicates the occurrence of starch catabolism and sucrose transformation into reducing sugars, respectively, in the establishment of a gradient from the CST towards the TNT. Reducing sugars in the TNT are important for the production of new cell walls during the indeterminate growth of the galls, which have increased levels of water-soluble polysaccharides that corroborate such a hypothesis. Functional relationship between plant hormone accumulation, carbohydrate metabolism and cell differentiation in D. gallaeformans-induced galls is attested, providing new insights on cell development and plant metabolism.