Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(12): 126502, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579201

RESUMEN

LiCu_{3}O_{3} is an antiferromagnetic mixed valence cuprate where trilayers of edge-sharing Cu(II)O (3d^{9}) are sandwiched in between planes of Cu(I) (3d^{10}) ions, with Li stochastically substituting Cu(II). Angle-resolved photoemission spectroscopy (ARPES) and density functional theory reveal two insulating electronic subsystems that are segregated in spite of sharing common oxygen atoms: a Cu d_{z^{2}}/O p_{z} derived valence band (VB) dispersing on the Cu(I) plane, and a Cu 3d_{x^{2}-y^{2}}/O 2p_{x,y} derived Zhang-Rice singlet (ZRS) band dispersing on the Cu(II)O planes. First-principle analysis shows the Li substitution to stabilize the insulating ground state, but only if antiferromagnetic correlations are present. Li further induces substitutional disorder and a 2D electron glass behavior in charge transport, reflected in a large 530 meV Coulomb gap and a linear suppression of VB spectral weight at E_{F} that is observed by ARPES. Surprisingly, the disorder leaves the Cu(II)-derived ZRS largely unaffected. This indicates a local segregation of Li and Cu atoms onto the two separate corner-sharing Cu(II)O_{2} sub-lattices of the edge-sharing Cu(II)O planes, and highlights the ubiquitous resilience of the entangled two hole ZRS entity against impurity scattering.

2.
Phys Rev Lett ; 125(7): 076401, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857568

RESUMEN

In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V. We show that electronic correlations are reduced on an ultrashort timescale by optical excitation of high-energy electrons-hole pairs, which transiently screen the Coulomb interaction. Our findings demonstrate an all-optical method for engineering the band structure of a quantum material.

3.
Phys Rev Lett ; 125(21): 216402, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274982

RESUMEN

Trigonal tellurium, a small-gap semiconductor with pronounced magneto-electric and magneto-optical responses, is among the simplest realizations of a chiral crystal. We have studied by spin- and angle-resolved photoelectron spectroscopy its unconventional electronic structure and unique spin texture. We identify Kramers-Weyl, composite, and accordionlike Weyl fermions, so far only predicted by theory, and show that the spin polarization is parallel to the wave vector along the lines in k space connecting high-symmetry points. Our results clarify the symmetries that enforce such spin texture in a chiral crystal, thus bringing new insight in the formation of a spin vectorial field more complex than the previously proposed hedgehog configuration. Our findings thus pave the way to a classification scheme for these exotic spin textures and their search in chiral crystals.

5.
Phys Rev Lett ; 118(17): 176404, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28498707

RESUMEN

We measured, by angle-resolved photoemission spectroscopy, the electronic structure of LiCu_{2}O_{2}, a mixed-valence cuprate where planes of Cu(I) (3d^{10}) ions are sandwiched between layers containing one-dimensional edge-sharing Cu(II) (3d^{9}) chains. We find that the Cu(I)- and Cu(II)-derived electronic states form separate electronic subsystems, in spite of being coupled by bridging O ions. The valence band, of the Cu(I) character, disperses within the charge-transfer gap of the strongly correlated Cu(II) states, displaying an unprecedented 250% broadening of the bandwidth with respect to the predictions of density functional theory. Our observation is at odds with the widely accepted tenet of many-body theory that correlation effects generally yield narrower bands and larger electron masses and suggests that present-day electronic structure techniques provide an intrinsically inappropriate description of ligand-to-d hybridizations in late transition metal oxides.

6.
Phys Rev Lett ; 113(18): 187001, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25396389

RESUMEN

We investigate by angle-resolved photoemission the electronic structure of in situ grown tetragonal CuO, a synthetic quasi-two-dimensional edge-sharing cuprate. We show that, in spite of the very different nature of the copper oxide layers, with twice as many Cu in the CuO layers of tetragonal CuO as compared to the CuO(2) layers of the high-T(c) cuprates, the low-energy electronic excitations are surprisingly similar, with a Zhang-Rice singlet dispersing on weakly coupled cupratelike sublattices. This system should thus be considered as a member of the high-T(c) cuprate family, with, however, interesting differences due to the intralayer coupling between the cupratelike sublattices.

7.
Phys Rev Lett ; 110(19): 196403, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23705725

RESUMEN

Oxygen vacancies created in anatase TiO(2) by UV photons (80-130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.

8.
Phys Rev Lett ; 110(23): 236401, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25167517

RESUMEN

We report a comprehensive study of the paradigmatic quasi-1D compound (TaSe(4))(2)I performed by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles electronic structure calculations. We find it to be a zero-gap semiconductor in the nondistorted structure, with non-negligible interchain coupling. Theory and experiment support a Peierls-like scenario for the charge-density wave formation below T(CDW)=263 K, where the incommensurability is a direct consequence of the finite interchain coupling. The formation of small polarons, strongly suggested by the ARPES data, explains the puzzling semiconductor-to-semiconductor transition observed in transport at T(CDW).

9.
Phys Rev Lett ; 109(9): 096803, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-23002871

RESUMEN

We observe a giant spin-orbit splitting in the bulk and surface states of the noncentrosymmetric semiconductor BiTeI. We show that the Fermi level can be placed in the valence or in the conduction band by controlling the surface termination. In both cases, it intersects spin-polarized bands, in the corresponding surface depletion and accumulation layers. The momentum splitting of these bands is not affected by adsorbate-induced changes in the surface potential. These findings demonstrate that two properties crucial for enabling semiconductor-based spin electronics-a large, robust spin splitting and ambipolar conduction-are present in this material.

10.
Rev Sci Instrum ; 79(3): 033905, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18377023

RESUMEN

We describe a new spectrometer for spin resolved photoemission from solids in the soft x-ray energy range. It is mounted on the ID08 beamline at the ESRF light source and consists of a time-of-flight (TOF) energy analyzer coupled to a retarding mini-Mott spin polarimeter. It represents a valid alternative to the spin detection system already available on ID08, especially for the acquisition of wide energy regions, where the TOF technique is extremely efficient. By testing the new spectrometer on the 4f levels of Au and on CuO at the Cu L3 threshold we show that the effective Sherman function and figure of merit achieved are, respectively, Seff approximately 0.16 and eta approximately 1.3x10(-4) and that for certain experiments we obtain a significant gain in intensity with respect to the previous system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA