Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(8): 1474-1488, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38956378

RESUMEN

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.


Asunto(s)
Células Asesinas Naturales , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Células Asesinas Naturales/inmunología , Transcriptoma , Neoplasias/inmunología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Tonsila Palatina/inmunología , Tonsila Palatina/citología , Perfilación de la Expresión Génica , Pulmón/inmunología , Citocinas/metabolismo
2.
Semin Immunol ; 66: 101712, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36753974

RESUMEN

Interleukin-1 receptor family members (ILRs) and Toll-Like Receptors (TLRs) play pivotal role in immunity and inflammation and are expressed by most cell types including cells of both the innate and adaptive immune system. In this context, IL-1 superfamily members are also important players in regulating function and differentiation of adaptive and innate lymphoid cells. This system is tightly regulated in order to avoid uncontrolled activation, which may lead to detrimental inflammation contributing to autoimmune or allergic responses. IL-1R8 (also known as TIR8 or SIGIRR) is a member of the IL-1R family that acts as a negative regulator dampening ILR and TLR signaling and as a co-receptor for human IL-37. Human and mouse NK cells, that are key players in immune surveillance of tumors and infections, express high level of IL-1R8. In this review, we will summarize our current understanding on the structure, expression and function of IL-1R8 and we will also discuss the emerging role of IL-1R8 as an important checkpoint regulating NK cells function in pathological conditions including cancer and viral infections.


Asunto(s)
Inmunidad Innata , Neoplasias , Animales , Humanos , Inflamación , Células Asesinas Naturales , Neoplasias/metabolismo , Receptores de Interleucina-1/metabolismo
3.
Semin Immunol ; 61-64: 101660, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36370672

RESUMEN

Monoclonal antibodies that target specific ligand-receptor signaling pathways and act as immune checkpoint inhibitors have been designed to remove the brakes in T cells and restore strong and long-term antitumor-immunity. Of note, many of these inhibitory receptors are also expressed by Innate Lymphoid Cells (ILCs), suggesting that also blockade of inhibitory pathways in innate lymphocytes has a role in the response to the treatment with checkpoint inhibitors. ILCs comprise cytotoxic NK cells and "helper" subsets and are important cellular components in the tumor microenvironment. In addition to killing tumor cells, ILCs release inflammatory cytokines, thus contributing to shape adaptive cell activation in the context of immunotherapy. Therefore, ILCs play both a direct and indirect role in the response to checkpoint blockade. Understanding the impact of ILC-mediated response on the treatment outcome would contribute to enhance immunotherapy efficacy, as still numerous patients resist or relapse.


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Inmunoterapia , Células Asesinas Naturales , Citocinas/metabolismo , Microambiente Tumoral
4.
Semin Immunol ; 61-64: 101668, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36370673

RESUMEN

Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Inmunidad Innata , Linfocitos/patología , Microambiente Tumoral
6.
Int J Cancer ; 152(8): 1698-1706, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36468179

RESUMEN

NK cells represent key players capable of driving antitumor immune responses. However, the potent immunosuppressive activity of the tumor microenvironment (TME) may impair their effector function. Here, we strengthen the importance of metabolic interactions between NK cells and TME and propose metabolic dysfunction as one of the major mechanisms behind NK failure in cancer treatment. In particular, we described that TME has a direct negative impact on NK cell function by disrupting their mitochondrial integrity and function in pediatric and adult patients with primary and metastatic cancer. Our results will help to design new strategies aimed at increasing the NK cell antitumor efficacy by their metabolic reprogramming. In this regard, we reveal an unprecedented role of IL15 in the metabolic reprogramming of NK cells enhancing their antitumor functions. IL15 prevents the inhibitory effect of soluble factors present in TME and restores both the metabolic characteristics and the effector function of NK cells inhibited by exposure to malignant pleural fluid. Thus, we propose here that IL15 may be exploited as a new strategy to metabolically reprogram NK cells with the aim of increasing the efficacy of NK-based immunotherapy in a wide range of currently refractory adult and pediatric solid tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Adulto , Humanos , Niño , Interleucina-15/metabolismo , Células Asesinas Naturales , Neoplasias/metabolismo , Inmunoterapia/métodos
7.
Cancer Immunol Immunother ; 72(6): 1417-1428, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36451048

RESUMEN

Natural killer (NK) cells are cytotoxic lymphoid cells that play a key role in defenses against tumors. However, their function may be severely impaired in patients with pancreatic adenocarcinoma (PA). Indeed, PA cells release soluble factors, thereby generating an immunosuppressive environment that dysregulates NK-cell cytolytic function and favors tumor immune evasion. Here, we analyzed the interactions between NK and PA cells using the PANC-1 and CAPAN-1 cell lines derived from a ductal PA and metastatic lesion, respectively. Metastatic and nonmetastatic cell lines were both able to impair NK cytolytic activity. An analysis of the effect of NK cells and NK-cell-derived exosomes revealed substantial differences between the two cell lines. Thus, NK cells displayed higher cytotoxicity against nonmetastatic PA cells than metastatic PA cells in both 2D cultures and in a 3D extracellular matrix cell system. In addition, NK-derived exosomes could penetrate only PANC-1 spheroids and induce cell killing. Remarkably, when PANC-1 cells were exposed to NK-derived soluble factors, they displayed substantial changes in the expression of genes involved in epithelial-to-mesenchymal transition (EMT) and acquired resistance to NK-mediated cytolysis. These results, together with their correlation with poor clinical outcomes in PA patients, suggest that the induction of resistance to cytolysis upon exposure to NK-derived soluble factors could reflect the occurrence of EMT in tumor cells. Our data indicate that a deeper investigation of the interaction between NK cells and tumor cells may be crucial for immunotherapy, possibly improving the outcome of PA treatment by targeting critical steps of NK-tumor cell crosstalk.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/patología , Neoplasias Pancreáticas/patología , Células Asesinas Naturales , Línea Celular , Línea Celular Tumoral , Neoplasias Pancreáticas
8.
Cytometry A ; 103(5): 378-382, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36708139

RESUMEN

Innate lymphoid cells (ILCs) comprise cytotoxic NK cells and helper-ILCs, which are further divided in ILC1, ILC2, and ILC3. Helper-ILCs mirror the effector functions of helper T-cell subsets and contribute to host immune defense, tissue homeostasis and repair through cytokine secretion. Although they are mainly tissue-resident, helper ILCs are also found in the peripheral blood (PB). In the human setting, it may be needed to analyze circulating helper ILCs to compare pathological to physiological conditions. In this review, we provide simple guidelines and a list of markers useful to study human PB helper ILCs phenotype and function by flow cytometry.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Citometría de Flujo , Células Asesinas Naturales
9.
Trends Immunol ; 41(5): 364-366, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307240

RESUMEN

Cyclically, during the day, increased permeability of the intestinal epithelial barrier, allowing nutrient uptake, must be compensated for, to achieve increased protection against potentially harmful components. Seillet et al. demonstrate that, upon food intake, enteric neuron-derived VIP promotes anticipatory mucosal immunity by inducing ILC3s to produce protective IL-22.


Asunto(s)
Microbioma Gastrointestinal , Neuropéptidos , Humanos , Inmunidad Mucosa , Mucosa Intestinal , Permeabilidad
10.
Immunity ; 41(6): 988-1000, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25500367

RESUMEN

Group 3 innate lymphoid cells (ILC3s) are defined by the expression of the transcription factor RORγt, which is selectively required for their development. The lineage-specified progenitors of ILC3s and their site of development after birth remain undefined. Here we identified a population of human CD34(+) hematopoietic progenitor cells (HPCs) that express RORγt and share a distinct transcriptional signature with ILC3s. RORγt(+)CD34(+) HPCs were located in tonsils and intestinal lamina propria (LP) and selectively differentiated toward ILC3s. In contrast, RORγt(-)CD34(+) HPCs could differentiate to become either ILC3s or natural killer (NK) cells, with differentiation toward ILC3 lineage determined by stem cell factor (SCF) and aryl hydrocarbon receptor (AhR) signaling. Thus, we demonstrate that in humans RORγt(+)CD34(+) cells are lineage-specified progenitors of IL-22(+) ILC3s and propose that tonsils and intestinal LP, which are enriched both in committed precursors and mature ILC3s, might represent preferential sites of ILC3 lineage differentiation.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Linfocitos/fisiología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Adulto , Antígenos CD34/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Humanos , Inmunidad Innata , Interleucinas/metabolismo , Intestinos/inmunología , Células Asesinas Naturales/fisiología , Análisis por Micromatrices , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Tonsila Palatina/inmunología , Transducción de Señal , Interleucina-22
11.
J Allergy Clin Immunol ; 149(5): 1772-1785, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34688777

RESUMEN

BACKGROUND: Innate lymphoid cells (ILCs) comprise cytotoxic natural killer (NK) cells and helper ILCs (hILCs). Human hILC development is less characterized as compared with that of NK cells, although all ILCs are developmentally related. It has been reported that the immunosuppressive drugs glucocorticoids (GCs) regulate ILC function, but whether they control ILC differentiation from hematopoietic stem cells (HSCs) is unknown. OBJECTIVES: This study sought to analyze the effect of GCs on ILC development from HSCs. METHODS: This study exploited an in vitro system to generate and expand from peripheral blood HSCs a multipotent CD56+ ILC precursor able to differentiate into NK cells, ILC1s, and ILC3s. We also analyzed ex vivo, at different time points, the peripheral blood of recipients of allogeneic HSC transplantation who were or were not treated with GCs and compared ILC subset reconstitution. RESULTS: Invitro, GCs favor the generation of NK cells from myeloid precursors, while they strongly impair lymphoid development. In support of these data, recipients of HSC transplantation who had been treated with GCs display a lower number of circulating hILCs, including the ILC precursor (ILCP) previously identified as a systemic substrate for tissue ILC differentiation. CONCLUSIONS: GCs impair the development of the CD117+ ILCP from CD34+ HSCs, while they do not affect the further steps of ILCP differentiation toward NK cells and hILC subsets. This reflects an association of GC treatment with a marked reduction of circulating hILCs in the recipients of HSC transplantation.


Asunto(s)
Glucocorticoides , Inmunidad Innata , Antígenos CD34 , Diferenciación Celular , Glucocorticoides/farmacología , Células Madre Hematopoyéticas , Humanos , Células Asesinas Naturales , Linfocitos
12.
Eur J Immunol ; 51(7): 1566-1579, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899224

RESUMEN

NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.


Asunto(s)
Células Asesinas Naturales/inmunología , Animales , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Inmunidad Innata/inmunología , Neoplasias/inmunología , Virosis/inmunología
13.
Mod Pathol ; 35(3): 376-385, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33990704

RESUMEN

Eosinophilic, solid and cystic (ESC) renal cell carcinoma (RCC) is characterized by a solid and cystic architecture with cells showing abundant eosinophilic cytoplasm with hobnail arrangement and a cytokeratin 7-negative/cytokeratin 20-positive immunophenotype. Recent studies have suggested that bi-allelic events affecting TSC genes might play an important role for such tumors. However, only indirect evidence of the clonal origin of TSC mutation has been gathered so far. Therefore, in this paper we aimed to perform multi-regional tumor sampling molecular analysis in four ESC RCC cases that had been completely embedded, three sporadic and one occurring in a patient with tuberous sclerosis complex (TSC). Histologically, the 4 cases showed cystic and solid architecture and cells with abundant eosinophilic cytoplasm with cytoplasmic stippling and round to oval nuclei. Immunohistochemistry showed at least focal expression of cytokeratin 20 in all tissue samples and negative cytokeratin 7, as well as diffuse positivity for S100A1 and at least focal expression of cathepsin K in three out of four cases. The sporadic cases showed the same somatic TSC1 mutations in all tissue samples analyzed, while the TSC-associated case showed the same TSC1 alteration in both normal tissue and all tumor samples analyzed, proving the germline nature of the alteration. In conclusion, our data demonstrate that clonal TSC loss is a key event in ESC RCC and support considering ESC RCC as an entity given its distinct morphologic, immunophenotypical and molecular characteristics.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Esclerosis Tuberosa , Humanos , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Muestreo , Esclerosis Tuberosa/genética
14.
Allergy ; 77(11): 3267-3292, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35842745

RESUMEN

The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.


Asunto(s)
Asma , Hipersensibilidad , Humanos , Inmunidad Innata , Linfocitos , Asma/diagnóstico , Asma/etiología , Inflamación
15.
Allergy ; 77(4): 1114-1128, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34582050

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic started in March 2020 and caused over 5 million confirmed deaths worldwide as far August 2021. We have been recently overwhelmed by a wide literature on how the immune system recognizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and contributes to COVID-19 pathogenesis. Although originally considered a respiratory viral disease, COVID-19 is now recognized as a far more complex, multi-organ-, immuno-mediated-, and mostly heterogeneous disorder. Though efficient innate and adaptive immunity may control infection, when the patient fails to mount an adequate immune response at the start, or in advanced disease, a high innate-induced inflammation can lead to different clinical outcomes through heterogeneous compensatory mechanisms. The variability of viral load and persistence, the genetic alterations of virus-driven receptors/signaling pathways and the plasticity of innate and adaptive responses may all account for the extreme heterogeneity of pathogenesis and clinical patterns. As recently applied to some inflammatory disorders as asthma, rhinosinusitis with polyposis, and atopic dermatitis, herein we suggest defining different endo-types and the related phenotypes along COVID-19. Patients should be stratified for evolving symptoms and tightly monitored for surrogate biomarkers of innate and adaptive immunity. This would allow to preventively identify each endo-type (and its related phenotype) and to treat patients precisely with agents targeting pathogenic mechanisms.


Asunto(s)
COVID-19 , Inmunidad Adaptativa , Humanos , Inmunidad Innata , Pandemias , SARS-CoV-2
16.
Trends Immunol ; 40(2): 83-85, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609967

RESUMEN

Antibodies directed towards checkpoint inhibitors have unveiled extraordinary potential in cancer therapy. An article by the Vivier group (Cell 2018;175:1731-1743) shows that blocking the HLA-E-specific NKG2A inhibitory receptor, expressed by NK and inducible in T cells, results in benefits against poor prognosis tumors. Moreover, NKG2A and PD-1/PD-L1 mAb combinations unleash tumor-specific T cell proliferation and memory.


Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias , Humanos , Factores Inmunológicos , Activación de Linfocitos , Linfocitos T/inmunología
17.
Semin Immunol ; 67: 101760, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084654
18.
J Allergy Clin Immunol ; 147(1): 349-360, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417134

RESUMEN

BACKGROUND: Programmed cell death protein 1 (PD-1)-immune checkpoint blockade has provided significant clinical efficacy across various types of cancer by unleashing both T and natural killer (NK) cell-mediated antitumor responses. However, resistance to immunotherapy occurs for many patients, rendering the identification of the mechanisms that control PD-1 expression extremely important to increase the response to the therapy. OBJECTIVE: We sought to identify the stimuli and the molecular mechanisms that induce the de novo PD-1 expression on human NK cells in the tumor setting. METHODS: NK cells freshly isolated from peripheral blood of healthy donors were stimulated with different combinations of molecules, and PD-1 expression was studied at the mRNA and protein levels. Moreover, ex vivo analysis of tumor microenvironment and NK cell phenotype was performed. RESULTS: Glucocorticoids are indispensable for PD-1 induction on human NK cells, in cooperation with a combination of cytokines that are abundant at the tumor site. Mechanistically, glucocorticoids together with IL-12, IL-15, and IL-18 not only upregulate PDCD1 transcription, but also activate a previously unrecognized transcriptional program leading to enhanced mRNA translation and resulting in an increased PD-1 amount in NK cells. CONCLUSIONS: These results provide evidence of a novel immune suppressive mechanism of glucocorticoids involving the transcriptional and translational control of an important immune checkpoint.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/inmunología , Glucocorticoides/inmunología , Interleucina-15/inmunología , Interleucina-18/inmunología , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunología , Células A549 , Humanos , Células K562
19.
J Allergy Clin Immunol ; 147(6): 2343-2357, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33493558

RESUMEN

BACKGROUND: There is limited knowledge on the origin and development from CD34+ precursors of the ample spectrum of human natural killer (NK) cells, particularly of specialized NK subsets. OBJECTIVE: This study sought to characterize the NK-cell progeny of CD34+DNAM-1brightCXCR4+ and of other precursors circulating in the peripheral blood of patients with chronic viral infections (eg, HIV, hepatitis C virus, cytomegalovirus reactivation). METHODS: Highly purified precursors were obtained by flow cytometric sorting and cultured in standard NK-cell differentiation media (ie, SCF, FLT3, IL-7, IL-15). Phenotypic and functional analyses on progenies were performed by multiparametric cytofluorimetric assays. Transcriptional signatures of NK-cell progenies were studied by microarray analysis. Inhibition of cytomegalovirus replication was studied by PCR. RESULTS: Unlike conventional CD34+ precursors, Lin-CD34+DNAM-1brightCXCR4+ precursors from patients with chronic infection, rapidly differentiate into cytotoxic, IFN-γ-secreting CD94/NKG2C+KIR+CD57+ NK-cell progenies. An additional novel subset of common lymphocyte precursors was identified among Lin-CD34-CD56-CD16+ cells and characterized by expression of CXCR4 and lack of perforin and CD94. Lin-CD34-CD56-CD16+Perf-CD94-CXCR4+ precursors are also endowed with generation potential toward memory-like NKG2C+NK cells. Maturing NK-cell progenies mediated strong human cytomegalovirus-inhibiting activity. Microarray analysis confirmed a transcriptional signature compatible with NK-cell progenies and with maturing adaptive NK cells. CONCLUSIONS: During viral infections, precursors of adaptive NK cells are released and circulate in the peripheral blood.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Biomarcadores , Diferenciación Celular , Citocinas/metabolismo , Infecciones por Citomegalovirus/virología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/inmunología
20.
Br J Haematol ; 195(3): 399-404, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34318932

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is an aggressive, heterogeneous neoplasm where prognostication and therapeutic decision are challenging. The available prognostic tools are not able to identify all patients refractory to treatment. MicroRNAs, small RNAs frequently deregulated in cancer, stably circulate in biofluids, representing interesting candidates for non-invasive biomarkers. Here we validated serum miR-22, an evolutionarily conserved microRNA, as a prognostic/predictive biomarker in DLBCL. Moreover, we found that its expression and release from DLBCL cells are related to therapy response and adversely affect cell proliferation. These results suggest that miR-22 is a promising complementary or even independent non-invasive biomarker for DLBCL management.


Asunto(s)
Linfoma de Células B Grandes Difuso/sangre , MicroARNs/sangre , ARN Neoplásico/sangre , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/sangre , División Celular/genética , Ciclofosfamida/administración & dosificación , Doxorrubicina/administración & dosificación , Exosomas/química , Genes bcl-2 , Genes myc , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/mortalidad , Anotación de Secuencia Molecular , Prednisona/administración & dosificación , Pronóstico , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-bcl-6/genética , Rituximab/administración & dosificación , Vincristina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA