Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
iScience ; 27(2): 108964, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38352232

RESUMEN

Continuing emergence of variants of concern resulting in reduced SARS-CoV-2 vaccine efficacy necessitates additional prevention strategies. The structure of VLPCOV-01, a lipid nanoparticle-encapsulated, self-amplifying RNA COVID-19 vaccine with a comparable immune response to BNT162b2, was revised by incorporating a modified base, 5-methylcytosine, to reduce reactogenicity, and an updated receptor-binding domain derived from the Brazil (gamma) variant. Interim analyses of a phase 1 dose-escalation booster vaccination study with the resulting construct, VLPCOV-02, in healthy, previously vaccinated Japanese individuals (N = 96) are reported (jRCT2051230005). A dose-related increase in solicited local and systemic adverse events was observed, which were generally rated mild or moderate. The most commonly occurring events were tenderness, pain, fatigue, and myalgia. Serum SARS-CoV-2 immunoglobulin titers increased during the 4 weeks post-immunization. VLPCOV-02 demonstrated a favorable safety profile compared with VLPCOV-01, with reduced adverse events and fewer fever events at an equivalent dose. These findings support further study of VLPCOV-02.

2.
Extracell Vesicle ; 32024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872853

RESUMEN

Antibodies are critical tools for research into extracellular vesicles (EVs) and other extracellular nanoparticles (ENPs), where they can be used for their identification, characterization, and isolation. However, the lack of a centralized antibody platform where researchers can share validation results thus minimizing wasted personnel time and reagents, has been a significant obstacle. Moreover, because the performance of antibodies varies among assay types and conditions, detailed information on assay variables and protocols is also of value. To facilitate sharing of results on antibodies that are relevant to EV/ENP research, the EV Antibody Database has been developed by the investigators of the Extracellular RNA Communication Consortium (ERCC). Hosted by the ExRNA Portal (https://exrna.org/resources/evabdb/), this interactive database aggregates and shares results from antibodies that have been tested by research groups in the EV/ENP field. Currently, the EV Antibody Database includes modules for antibodies tested for western Blot, EV Flow Cytometry, and EV Sandwich Assays, and holds 110 records contributed by 6 laboratories from the ERCC. Detailed information on antibody sources, assay conditions, and results is provided, including negative results. We encourage ongoing expert input and community feedback to enhance the database's utility, making it a valuable resource for comprehensive validation data on antibodies and protocols in EV biology.

3.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961509

RESUMEN

In order to improve vaccine effectiveness and safety profile of existing synthetic RNA-based vaccines, we have developed a self-amplifying RNA (saRNA)-based vaccine expressing membrane-anchored receptor binding domain (RBD) of SARS-CoV-2 S protein (S-RBD) and have demonstrated that a minimal dose of this saRNA vaccine elicits robust immune responses. Results from a recent clinical trial with 5-methylcytidine (5mC) incorporating saRNA vaccine demonstrated reduced vaccine-induced adverse effects while maintaining robust humoral responses. In this study, we investigate the mechanisms accounting for induction of efficient innate and adaptive immune responses and attenuated adverse effects induced by the 5mC-incorporated saRNA. We show that the 5mC-incorporating saRNA platform leads to prolonged and robust expression of antigen, while induction of type-I interferon (IFN-I), a key driver of reactogenicity, is attenuated in peripheral blood mononuclear cells (PBMCs), but not in macrophages and dendritic cells. Interestingly, we find that the major cellular source of IFN-I production in PBMCs is plasmacytoid dendritic cells (pDCs), which is attenuated upon 5mC incorporation in saRNA. In addition, we demonstrate that monocytes also play an important role in amplifying proinflammatory responses. Furthermore, we show that the detection of saRNA is mediated by a host cytosolic RNA sensor, RIG-I. Importantly, 5mC-incorporating saRNA vaccine candidate produced robust IgG responses against S-RBD upon injection in mice, thus providing strong support for the potential clinical use of 5mC-incorporating saRNA vaccines.

4.
Nat Commun ; 14(1): 2810, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208330

RESUMEN

Several vaccines have been widely used to counteract the global pandemic caused by SARS-CoV-2. However, due to the rapid emergence of SARS-CoV-2 variants of concern (VOCs), further development of vaccines that confer broad and longer-lasting protection against emerging VOCs are needed. Here, we report the immunological characteristics of a self-amplifying RNA (saRNA) vaccine expressing the SARS-CoV-2 Spike (S) receptor binding domain (RBD), which is membrane-anchored by fusing with an N-terminal signal sequence and a C-terminal transmembrane domain (RBD-TM). Immunization with saRNA RBD-TM delivered in lipid nanoparticles (LNP) efficiently induces T-cell and B-cell responses in non-human primates (NHPs). In addition, immunized hamsters and NHPs are protected against SARS-CoV-2 challenge. Importantly, RBD-specific antibodies against VOCs are maintained for at least 12 months in NHPs. These findings suggest that this saRNA platform expressing RBD-TM will be a useful vaccine candidate inducing durable immunity against emerging SARS-CoV-2 strains.


Asunto(s)
COVID-19 , Vacunas , Animales , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Motivo de Reconocimiento de ARN , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Cell Rep Med ; 4(8): 101134, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586325

RESUMEN

VLPCOV-01 is a lipid nanoparticle-encapsulated self-amplifying RNA (saRNA) vaccine that expresses a membrane-anchored receptor-binding domain (RBD) derived from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. A phase 1 study of VLPCOV-01 is conducted (jRCT2051210164). Participants who completed two doses of the BNT162b2 mRNA vaccine previously are randomized to receive one intramuscular vaccination of 0.3, 1.0, or 3.0 µg VLPCOV-01, 30 µg BNT162b2, or placebo. No serious adverse events have been reported. VLPCOV-01 induces robust immunoglobulin G (IgG) titers against the RBD protein that are maintained up to 26 weeks in non-elderly participants, with geometric means ranging from 5,037 (95% confidence interval [CI] 1,272-19,940) at 0.3 µg to 12,873 (95% CI 937-17,686) at 3 µg compared with 3,166 (95% CI 1,619-6,191) with 30 µg BNT162b2. Neutralizing antibody titers against all variants of SARS-CoV-2 tested are induced. VLPCOV-01 is immunogenic following low-dose administration. These findings support the potential for saRNA as a vaccine platform.


Asunto(s)
COVID-19 , Vacunas , Humanos , Persona de Mediana Edad , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162 , SARS-CoV-2/genética , ARN , COVID-19/prevención & control , Vacunas de ARNm
6.
Eur J Pharmacol ; 915: 174698, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896109

RESUMEN

Calcium signaling regulates various cellular processes, including proliferation and cell death. DNA methylation of gene promoters is an epigenetic modification that facilitates transcriptional suppression. Disruption of calcium homeostasis and DNA methylation in cancer are each linked to tumor development and progression. However, the possible connection between these two processes has not been thoroughly studied. Therefore, we measured the expression of six gene families involved in calcium regulation (ATP2A, ITPR, ORAI, RyR, STIM, and TRPC) in a colorectal cancer cell model, HCT116, with either genetic (Double Knock-out/DKO) or pharmacological (5-aza-2'-deoxycytidine/DAC) inhibition of DNA methyltransferases. Fourteen of the 20 examined calcium handling genes were expressed at higher levels in DKO cells as compared to HCT116. Expression of five genes was increased in HCT116 cells treated with DAC, three matching DKO. Due to a unique expression pattern of the three ATP2A genes in our model, encoding the Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase (SERCA) pumps, we chose to evaluate the methylation status of these genes, protein expression, and potential associated physiological effects, using the SERCA inhibitor thapsigarin (TG). We observed an expected pattern of promoter methylation coinciding with reduced expression and vice versa. This differential mRNA expression was associated with altered SERCA3 protein expression and cytosolic calcium levels with TG exposure. As a result, DKO cells displayed less TG-induced cytotoxicity, as compared to HCT116 cells. Overall, it is likely that at least several calcium regulatory genes are transcriptionally regulated by DNA methylation, and this may play a role in tumorigenesis through altering apoptosis in cancer.


Asunto(s)
Calcio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA