Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Environ Manage ; 289: 112512, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848881

RESUMEN

Polycyclic Aromatic Hydrocarbons (PAHs) are major toxic and recalcitrant pollutants in the environment. This study assessed the capacity of an isolated soil microbial consortium (OMC) to biodegrade PAHs. OMC was able to reach 100% biodegradation of naphthalene, acenaphthylene, acenaphthene, fluorene and phenanthrene in solution, and up to 76% and 50% of anthracene and fluoranthene, respectively, from a mix of 16 PAHs. To measure phenanthrene (PHE) mineralization, OMC and eight strains isolated from OMC were used and identified by PCR amplification of the gene 16S ribosomal RNA. A novel Stenotrophomonas maltophilia CPHE1, not previously described as a PAH degrader, was able to mineralize almost 40% PHE and biodegrade 90.5% in solution, in comparison to OMC that reached 100% PHE degradation, but only 18.8% mineralization. Based on metabolites identified during PHE degradation and on the detection of two genes (PAH RHDα and nahAc) in OMC consortium, two possible via were described for its degradation, through salicylic and phthalic acid. PAH RHDα, which codified the first step on PHE biodegradation pathway, was also found in the DNA of S. maltophilia CPHE1. An ecotoxicology study showed that PHE bioremediation after inoculating S. maltophilia CPHE1 for 30 days decreased by half the solution toxicity.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Stenotrophomonas maltophilia , Biodegradación Ambiental , Estudios de Factibilidad , Consorcios Microbianos , Suelo , Microbiología del Suelo , Stenotrophomonas maltophilia/genética
2.
J Hazard Mater ; 464: 132970, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976863

RESUMEN

Ibuprofen (IBP) is a widely used drug of environmental concern as emerging contaminant due to its low elimination rates by wastewater treatment plants (WWTPs), leading to the contamination of the environment, where IBP is introduced mainly from wastewater discharge and sewage sludge used as fertilizer. This study describes the application of a consortium from sewage sludge and acclimated with ibuprofen (consortium C7) to accelerate its biodegradation both in solution and sewage sludge. 500 mg L-1 IBP was degraded in solution in 28 h, and 66% mineralized in 3 days. IBP adsorbed in sewage sludge (10 mg kg-1) was removed after bioaugmentation with C7 up to 90% in 16 days, with a 5-fold increase in degradation rate. This is the first time that bioaugmentation with bacterial consortia or isolated bacterial strains have been used for IBP degradation in sewage sludge. The bacterial community of consortium C7 was significantly enriched in Sphingomonas wittichii, Bordetella petrii, Pseudomonas stutzeri and Bosea genosp. after IBP degradation, with a special increase in abundance of S. wittichii, probably the main potential bacterial specie responsible for IBP mineralization. Thirteen bacterial strains were isolated from C7 consortium. All of them degraded IBP in presence of glucose, especially Labrys neptuniae. Eight of these bacterial strains (B. tritici, L. neptuniae, S. zoogloeoides, B. petrii, A. denitrificans, S. acidaminiphila, P. nitroreducens, C. flaccumfaciens) had not been previously described as IBP-degraders. The bacterial community that makes up the indigenous consortium C7 appears to have a highly efficient biotic degradation potential to facilitate bioremediation of ibuprofen in contaminated effluents as well as in sewage sludge generated in WWTPs.


Asunto(s)
Ibuprofeno , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Biodegradación Ambiental , Ibuprofeno/metabolismo , Consorcios Microbianos , Aguas Residuales , Bacterias/metabolismo
3.
Microorganisms ; 11(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677487

RESUMEN

Paracetamol is one of the most used pharmaceuticals worldwide, but due to its widespread use it is detected in various environmental matrices, such as surface and ground waters, sediments, soils or even plants, where it is introduced mainly from the discharge of wastewater and the use of sewage sludge as fertilizer in agriculture. Its accumulation in certain organisms can induce reproductive, neurotoxic or endocrine disorders, being therefore considered an emerging pollutant. This study reports on the isolation, from sewage sludge produced in wastewater treatment plants (WWTPs), of bacterial strains capable of degrading paracetamol. Up to 17 bacterial strains were isolated, but only two of them, identified as Pseudomonas stutzeri CSW02 and Pseudomonas extremaustralis CSW01, were able to degrade very high concentrations of paracetamol in solution as a sole carbon and energy source, and none of them had been previously described as paracetamol degraders. These bacteria showed the ability to degrade up to 500 mg L-1 of paracetamol in only 6 and 4 h, respectively, much quicker than any other paracetamol-degrader strain described in the literature. The two main paracetamol metabolites, 4-aminophenol and hydroquinone, which present high toxicity, were detected during the degradation process, although they disappeared very quickly for paracetamol concentrations up to 500 mg L-1. The IC50 of paracetamol for the growth of these two isolates was also calculated, indicating that P. extremaustralis CSW01 was more tolerant than S. stutzeri CSW02 to high concentrations of paracetamol and/or its metabolites in solution, and this is the reason for the much lower paracetamol degradation by S. stutzeri CSW02 at 2000-3000 mg L-1. These findings indicate that both bacteria are very promising candidates for their use in paracetamol bioremediation in water and sewage sludge.

4.
3 Biotech ; 13(2): 53, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36685321

RESUMEN

Environmental pollution caused by polycyclic aromatic hydrocarbons (PAHs) involves a high-risk and have received considerable attention due to their carcinogenic, teratogenic, and mutagenic properties. Phenanthrene (PHE) is a low molecular weight PAH, which has three benzene rings. It is one of the most common PAH found in contaminated environments mainly due to its low volatilization ability and hydrophobic character. A PHE degrading bacterium was isolated from an industrial contaminated soil using enrichment culture techniques. Based on macroscopic, microscopic examination and phylogenetic analysis, this bacterium was classified as Stenotrophomonas indicatrix and named strain CPHE1. Several authors have reported about bacteria stains, which can degrade PHE, but this is the first time where the ability of S. indicatrix to biodegrade and mineralize PHE has been demonstrated.

5.
Front Bioeng Biotechnol ; 11: 1158177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214282

RESUMEN

Phenanthrene (PHE) is a highly toxic compound, widely present in soils. For this reason, it is essential to remove PHE from the environment. Stenotrophomonas indicatrix CPHE1 was isolated from an industrial soil contaminated by polycyclic aromatic hydrocarbons (PAHs) and was sequenced to identify the PHE degrading genes. Dioxygenase, monooxygenase, and dehydrogenase gene products annotated in S. indicatrix CPHE1 genome were clustered into different trees with reference proteins. Moreover, S. indicatrix CPHE1 whole-genome sequences were compared to genes of PAHs-degrading bacteria retrieved from databases and literature. On these basis, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis pointed out that cysteine dioxygenase (cysDO), biphenyl-2,3-diol 1,2-dioxygenase (bphC), and aldolase hydratase (phdG) were expressed only in the presence of PHE. Therefore, different techniques have been designed to improve the PHE mineralization process in five PHE artificially contaminated soils (50 mg kg-1), including biostimulation, adding a nutrient solution (NS), bioaugmentation, inoculating S. indicatrix CPHE1 which was selected for its PHE-degrading genes, and the use of 2-hydroxypropyl-ß-cyclodextrin (HPBCD) as a bioavailability enhancer. High percentages of PHE mineralization were achieved for the studied soils. Depending on the soil, different treatments resulted to be successful; in the case of a clay loam soil, the best strategy was the inoculation of S. indicatrix CPHE1 and NS (59.9% mineralized after 120 days). In sandy soils (CR and R soils) the highest percentage of mineralization was achieved in presence of HPBCD and NS (87.3% and 61.3%, respectively). However, the combination of CPHE1 strain, HPBCD, and NS showed to be the most efficient strategy for sandy and sandy loam soils (LL and ALC soils showed 35% and 74.6%, respectively). The results indicated a high degree of correlation between gene expression and the rates of mineralization.

6.
Sci Total Environ ; 653: 384-392, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30412883

RESUMEN

This study evaluated the effect of several cyclodextrins (CDs) and a rhamnolipid (RL) on the removal of polycyclic aromatic hydrocarbons (PAHs) from a co-contaminated soil which had received historically creosote and inorganic wood preservatives for almost 100 years, and the effect of such extractions on the potentially toxic elements (PTEs). The influence on such processes of an electrolyte (0.01 M Ca(NO3)2) was also studied. Up to 15.4% of the ∑16 PAHs were extracted using RL in the absence of the electrolyte as washing solution, but decreases until reaching 0.60% in the presence of Ca2+ due to RL precipitation and partial inactivation. Only up to 2% of the ∑16 PAHs was extracted with CDs (4-ring PAHs in higher concentrations), but the electrolyte had no effect on extraction. In relation to PTEs, CDs proved to be inefficient for their extraction, and even RL in the presence of the background electrolyte. But in the absence of electrolyte PTEs extraction by RL increased. Apart from that, the availability of Ni, Cr, and As, those more associated to Fe and Al soil surfaces, increased after extraction with RLs in the presence of Ca2+ (about 100% for Cr and Ni and 200% for As). Under these conditions Fe and Al availability increased two- and ten-fold, respectively, indicating that Fe-Al soil surfaces were altered. Therefore, the ionic strength and the cations present in the soil solution of soils have to be considered when RLs are used as extractants for remediation purposes.


Asunto(s)
Ciclodextrinas/química , Monitoreo del Ambiente , Glucolípidos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Creosota/análisis , Electrólitos/química , Contaminantes del Suelo/química
7.
Front Microbiol ; 10: 2588, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798552

RESUMEN

A PAHs-contaminated industrial soil was analyzed using PCR amplification of the gene 16S ribosomal RNA for the detection and identification of different isolated bacterial strains potentially capable of degrading PAHs. Novel degrader strains were isolated and identified as Achromobacter xylosoxidans 2BC8 and Stenotrophomonas maltophilia JR62, which were able to degrade PYR in solution, achieving a mineralization rate of about 1% day-1. A. xylosoxidans was also able to mineralize PYR in slurry systems using three selected soils, and the total extent of mineralization (once a plateau was reached) increased 4.5, 21, and 57.5% for soils LT, TM and CR, respectively, regarding the mineralization observed in the absence of the bacterial degrader. Soil TM contaminated with PYR was aged for 80 days and total extent of mineralization was reduced (from 46 to 35% after 180 days), and the acclimation period increased (from 49 to 79 days). Hydroxypropyl-ß-cyclodextrin (HPBCD) was used as a bioavailability enhancer of PYR in this aged soil, provoking a significant decrease in the acclimation period (from 79 to 54 days) due to an increase in PYR bioavailable fraction just from the beginning of the assay. However, a similar global extension of mineralization was obtained. A. xylosoxidans was then added together with HPBCD to this aged TM soil contaminated with PYR, and the total extent of mineralization decreased to 25% after 180 days, possibly due to the competitive effect of endogenous microbiota and the higher concentration of PYR in the soil solution provoked by the addition of HPBCD, which could have a toxic effect on the A. xylosoxidans strain.

8.
Water Res ; 42(4-5): 1211-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17915281

RESUMEN

Vesicle-clay complexes in which positively charged vesicles composed of didodecyldimethylammonium bromide (DDAB) were adsorbed on montmorillonite removed efficiently anionic (sulfentrazone, imazaquin) and neutral (alachlor, atrazine) pollutants from water. These complexes (0.5% w:w) removed 92-100% of sulfentrazone, imazaquin and alachlor and 60% of atrazine from a solution containing 10mg/L of it. A synergistic effect on the adsorption of atrazine was observed when all pollutants were present simultaneously (30 mg/L each), its percentage of removal being 85.5. Column filters (18 cm) filled with a mixture of quartz sand and vesicle-clay (100:1, w:w) were tested. For the passage of 1L (25 pore volumes) of a solution including all the pollutants at 10mg/L each, removal was complete for sulfentrazone and imazaquin, 94% for alachlor and 53.1% for atrazine, whereas removal was significantly less efficient when using activated carbon. A similar advantage of the vesicle-clay filter was observed for the capacities of removal.


Asunto(s)
Silicatos de Aluminio/química , Herbicidas/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química , Contaminantes del Agua/química , Purificación del Agua/métodos , Acetamidas/química , Adsorción , Atrazina/química , Arcilla , Imidazoles/química , Quinolinas/química , Sulfonamidas/química , Triazoles/química
9.
Sci Total Environ ; 390(2-3): 507-13, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18006042

RESUMEN

A multiresidue gas chromatography-mass spectrometry method was developed to determine 28 priority pesticides of different chemical families (organochlorine, organophosphorus, triazines, anilides) together with some of their transformation products in river sediment. Ultrasonic, Soxhlet and pressurized liquid extraction (PLE) methods were compared in spiking experiments using acetone:hexane (1:1) followed by alumina solid phase extraction cartridges or in-cell alumina clean-up for PLE. All extraction techniques produced acceptable recoveries for the pesticides under study, although Soxhlet extraction produced the lowest recoveries for 2,4-DDE, trifluralin, lindane, and hexachlorobenzene (<50%) whereas ultrasonic extraction resulted in low recoveries for hexachlorobenzene and lindane (<50%). However, PLE using in-cell alumina clean-up produced an overestimation of more apolar compounds, given the amount of coextracted compounds. Limits of detection at the low microg L(-1)-ng L(-1) levels were obtained with Soxhlet and ultrasonic extraction, while PLE produced higher variability due to the lack of exhaustive clean-up. Given the simplicity of ultrasonic extraction, this method was further employed to determine target compounds in river sediments collected in Portugal. Lindane was detected in practically all samples, followed by trace levels of the pesticides simazine, diazinon, fenitrothion, and parathion-methyl.


Asunto(s)
Sedimentos Geológicos/química , Plaguicidas/química , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas , Plaguicidas/análisis , Portugal , Ríos , Contaminantes Químicos del Agua/análisis
10.
J Agric Food Chem ; 55(9): 3561-7, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17407320

RESUMEN

Five ethylcellulose (EC) microencapsulated formulations (MEFs) of norflurazon were prepared and applied in soil to study their mobility, dissipation, activity, and persistence. The results show that the release into water of norflurazon from EC microspheres was retarded when compared with that of commercial herbicide. The mobility of norflurazon from MEFs into soil columns has been greatly diminished in comparison with that of its current commercial formulation (CF). Norflurazon distribution at different depths in the soil was higher in the upper ring (up to 50% of the initial application). In contrast, the residues from commercial norflurazon along the complete soil column were only about 2%. Degradation and bioassay experiments showed that the MEFs had greater persistence (t1/2 values were 7.72 and 30.83 weeks for CF and MEFs, respectively) and herbicidal activity than the commercial formulation. The use of these formulations can be advantageous, because they can minimize the risk of groundwater contamination and permit herbicide use at reduced rates, maintaining the desired concentrations of herbicide in the topsoil layer for longer periods of weed control.


Asunto(s)
Herbicidas/química , Piridazinas/química , Suelo/análisis , Fenómenos Químicos , Química Farmacéutica , Química Física , Microesferas
11.
J Agric Food Chem ; 55(20): 8200-5, 2007 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17803265

RESUMEN

The development of controlled-release formulations of alachlor to diminish its leaching in sandy soils, avoiding groundwater contamination and maintaining its efficacy, was studied. For this purpose, ethylcellulose (EC) microencapsulated formulations (MEFs) of alachlor were prepared under different conditions and applied to soil columns to study their mobility. The results show that in all cases the release into water of alachlor from MEFs was retarded when compared with commercial formulation. Total leaching losses in soil columns were reduced to 59% from 98%. The mobility of alachlor from EC microspheres into soil columns has been greatly diminished in comparison with its current commercial formulation (CF), above all with increasing EC/herbicide ratios. Distribution of alachlor applied as MEFs at different depths in the soil was higher in the soil surface (66.3-81.3% of herbicide applied at the first 12 cm). In contrast, the residues from CF along the complete soil column were only 20.4%. From the results of bioassays, MEFs showed a higher efficacy than CF at 30 days after the treatment. The use of ME formulations could provide an advantage in minimizing the risk of groundwater contamination by alachlor and reducing the application rates, as a result of maintaining the desired concentration of the herbicide in the top soil layer, obtaining longer periods of weed control.


Asunto(s)
Acetamidas/administración & dosificación , Celulosa/análogos & derivados , Herbicidas/administración & dosificación , Microesferas , Suelo/análisis , Acetamidas/química , Preparaciones de Acción Retardada , Herbicidas/química
12.
Chemosphere ; 69(4): 575-84, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17462707

RESUMEN

This paper investigated the photochemical behaviour of the herbicide norflurazon (NFL) in the presence of different soil colloidal components and several cyclodextrins (CDs). The interaction of NFL with CDs yielded the formation of inclusion complexes at 1:1 stoichiometric ratio in solution, with an increase of the herbicide solubility. The irradiation of NFL aqueous solutions in the presence of CDs showed that the higher the formation constant of NFL-CD complexes (Kc) and their solubility, the higher their photocatalytic effects, following the CDs in the order: RAMEB>HPBCD>beta-CD>alpha-CD>gamma-CD. The presence of the different soil colloidal components in aqueous suspension provoked the reduction of the NFL photodegradation rate, due to a screening effect, especially when goethite and humic acids were present. No disappearance of NFL was detected in parallel studies carried out in the dark, except in the case of humic acids, where a 5% adsorption of the initial amount of NFL was adsorbed in the dark control. The presence of the different CDs in such systems showed an inductive photodegradation effect on the herbicide. This could be largely explained by the inclusion effects of CDs in catalyzing interactions between NFL and certain reactive radicals generated by the different colloidal components. Although this work was carried out at laboratory scale and therefore, has limited applications, it reveals that cyclodextrins increase solubilization of hydrophobic herbicides and could lead to their increased photodegradation. This could be a promising method for pesticide-contaminated water remediation. However, it is important to consider the effect of the soil colloidal components in the different aquatic systems and their concentrations, since they can alter the photodegradative effects of the cyclodextrins.


Asunto(s)
Ciclodextrinas/química , Herbicidas/química , Herbicidas/efectos de la radiación , Piridazinas/química , Piridazinas/efectos de la radiación , Rayos Ultravioleta , Coloides , Contaminantes Ambientales/química , Contaminantes Ambientales/efectos de la radiación , Interacciones Hidrofóbicas e Hidrofílicas , Suelo , Solubilidad , Soluciones , Administración de Residuos/métodos
13.
J Hazard Mater ; 322(Pt B): 334-347, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27776866

RESUMEN

The use of pesticides in agriculture is essential because it reduces the economic losses caused by pests, improving crop yields. In spite of the growing number of studies concerning the development and application of controlled release formulations (CRFs) of pesticides in agricultural soils, there are no studies about the effects of such formulations on the biochemical properties. In this paper the dissipation of diuron and alachlor in three agricultural soils for 127days, applied either as commercial or CRFs, was determined as well as their concomitant effects on soil biochemical properties. Dehydrogenase, urease, ß-glucosidase and phosphatase activities were measured thought the experimental period. The application of alachlor as CRF increases its half-life time in soils, whereas no differences were noticed between diuron formulations due to its slower degradation, which takes longer than its release from the CRF. At the end of the incubation period, the enzymatic activities were the same after the use of diuron either as commercial or CRF, recovering the soil previous status. For alachlor formulations, no differences in enzymatic activities were again observed between both formulations, but their levels in soils were enhanced. Therefore, the use of these CRFs does not adversely affect the soil biochemical properties.


Asunto(s)
Acetamidas/análisis , Diurona/análisis , Herbicidas/análisis , Residuos de Plaguicidas/análisis , Suelo/química , Acetamidas/administración & dosificación , Agricultura , Silicatos de Aluminio , Arcilla , Diurona/administración & dosificación , Enzimas/análisis , Herbicidas/administración & dosificación , Fosfatidilcolinas
14.
Environ Sci Pollut Res Int ; 24(16): 14463-14476, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28444565

RESUMEN

Pyrimethanil (2-aniline-4, 6-dimethylpyrimidine, PRM) is used in fruit packing plants to control fungal infections and diseases. The effluents greatly polluted with this fungicide, as a point source contamination, need to be technologically treated for their regeneration before they reach water bodies. This work evaluates the use of organo-montmorillonites, synthetized in our laboratory, for their application in adsorption and coagulation/flocculation processes for the removal of PRM from water. The adsorption-desorption performance of PRM in a raw montmorillonite (Mt) and several organo-montmorillonites (organo-Mt) obtained by different amounts and types of exchanged surfactants (octadecyltrimethylammonium (ODTMA) and didodecyldimethylammonium (DDAB) bromides and benzyltrimethylammonium chloride (BTMA)) was studied. The PRM adsorption on raw Mt was assigned mainly to an interlayer occupancy, while hydrophobic interactions between PRM and the surfactants in the exchanged samples increased PRM adsorption, which was correlated with the surfactant loading. PRM desorption showed irreversible behavior in raw Mt, which changed to reversible for organo-Mt samples, and was also correlated with the increase of surfactant loading.Two of the organo-Mt with high surfactant loading (twice the CEC) were assayed for the removal of commercial PRM in coagulation/flocculation tests, and their performance was compared to that of the native clay (Mt). The use of the organo-Mt produced flocculation at a very low ratio (0.5 g L-1), whereas no flocculation was observed with Mt. These results proved the feasibility of the use of organo-Mt for the treatment of wastewater contaminated with PRM using a low organo-Mt/liquid ratio.


Asunto(s)
Bentonita/química , Pirimidinas/química , Purificación del Agua , Adsorción , Floculación , Agua
15.
J Agric Food Chem ; 54(13): 4766-72, 2006 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-16787026

RESUMEN

The effects of beta-cyclodextrin (BCD) on the sorption-desorption and transport processes of the herbicide norflurazon (NFL) in soils of different characteristics when both are applied simultaneously have been investigated. Adsorption-desorption studies of NFL on six soils of very different characteristics in the presence of BCD have been performed using a batch equilibration method and correlated to its mobility in homogeneous hand-packed soil columns. NFL determinations were undertaken by HPLC equipped with a diode array detector at a wavelength of 220 nm. BCD was also analyzed by HPLC with fluorimetric detection using a postcolumn reaction. The interaction of NFL with BCD yielded the formation of an inclusion complex in solution. When this complex is applied to soils, a large decrease in NFL adsorption capacity and an increase in its desorption were observed, due to the higher tendency of NFL-BCD complexes to remain in solution. The results obtained in adsorption and soil column experiments indicated that the influence of BCD on NFL mobility and availability depends on the different affinities of BCD to be sorbed on soils of different characteristics and on the concentration of BCD used. The lower the concentration of BCD added, the more tenaciously it adheres to the soil, and most of the BCD molecules would be adsorbed, providing a coating to soil particles that acts as a bridge between NFL and the soil surface, acting as an adsorbent and retarding the mobility of the herbicide. At higher concentrations of BCD, or in soils where its adsorption is very low, most of the BCD molecules are in the aqueous phase and NFL molecules tend to be complexed with BCD in solution, acting then as a solubilizing agent.


Asunto(s)
Herbicidas/administración & dosificación , Piridazinas/administración & dosificación , Piridazinas/química , Suelo/análisis , beta-Ciclodextrinas/administración & dosificación , Adsorción , Fenómenos Químicos , Química Física , Cromatografía Líquida de Alta Presión
16.
J Agric Food Chem ; 53(13): 5366-72, 2005 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-15969520

RESUMEN

The effect of beta-cyclodextrin (beta-CD) on the removal of the herbicide norflurazon (NFL) from soils has been investigated. The interaction of NFL with beta-CD in solution yielded the formation of a water-soluble inclusion complex at 1:1 stoichiometric ratio, which gave an increase in NFL solubility. Desorption studies of NFL previously adsorbed on six soils of different characteristics have been performed in the presence of 0.01 M beta-CD or 0.01 M Ca(NO(3))(2) as extractant solutions. Positive hysteresis was observed in all soils when 0.01 M Ca(NO(3))(2) solution was used, indicating that desorption of NFL from these soils was not completely reversible. On the contrary, the application of beta-CD solutions to soils where NFL had been previously adsorbed increased very much its desorption, and a negative hysteresis was obtained for all soils studied; that is, more NFL was desorbed with respect to NFL adsorption isotherm. A clear relationship was observed between the physicochemical characteristics of the soils and the beta-CD concentration necessary to remove the herbicide, the percentages of desorption observed for each soil being inversely related to the values obtained for the Freundlich sorption capacity parameter of the herbicide, K(f). In general, high desorption yields can be obtained with very low beta-CD concentrations, which is an important advantage from an economic point of view, although in those soils that present an extremely high NFL adsorption, higher amounts of beta-CD should be used. The results obtained indicate the high extracting power of beta-CD toward the herbicide previously adsorbed on the soils and the potential use of beta-CD for in situ remediation of pesticide-contaminated soils.


Asunto(s)
Herbicidas/química , Piridazinas/química , Suelo/análisis , beta-Ciclodextrinas/química , Adsorción , Fenómenos Químicos , Química Física , Soluciones
17.
J Agric Food Chem ; 53(9): 3540-7, 2005 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-15853399

RESUMEN

The herbicide norflurazon was encapsulated in ethylcellulose (EC(40)) microspheres by the solvent evaporation technique to obtain controlled release formulations. The kinetics of release of the active ingredient into the aqueous solution from different preparations was determined. It was found that the percentage release of the incorporated herbicide was a function of the composition and formation conditions of the formulations (amount of emulsifying agent, EC(40)/herbicide ratio, stirring speed, and percentage of pore-forming agent). The percentage of the herbicide release was related to the properties of the different microspheres obtained, such as particle size distribution, herbicide loading, or surface morphology. The release percentage depended inversely on the particle size of the microspheres and directly on the content of active ingredient and emulsifying and pore-forming agents. An empirical equation was used to fit the herbicide release data, indicating that the release of norflurazon from the various formulations is controlled by a diffusion mechanism. The time taken for 50% of the active ingredient to be released into water (T(50)) was calculated, showing a wide variation among the different preparations (0.95-16.4 days).


Asunto(s)
Celulosa/análogos & derivados , Herbicidas/administración & dosificación , Piridazinas/administración & dosificación , Agua , Preparaciones de Acción Retardada , Microesferas , Tamaño de la Partícula
18.
Chemosphere ; 60(5): 656-64, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15963804

RESUMEN

The interaction of norflurazon with alpha- and gamma-cyclodextrins (CDs) yielded the formation of inclusion complexes at a 1:1 stoichiometric ratio in solution and in the solid state. Apparent stability constants of 50.7+/-1.6 and 37+/-1.7 M(-1) and an increase in herbicide solubility by up to five and fourfold for alpha- and gamma-CD, respectively, were determined from the phase solubility diagrams at 25 degrees C in water. Three processing methods (kneading, spray-drying and vacuum evaporation) were used to prepare norflurazon-CD solid inclusion complexes, which were characterised by infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. A high increase in the norflurazon dissolution rate was obtained with all the solid complexes with gamma-CD, but when alpha-CD was used, only the solid system obtained after the vacuum evaporation process showed a higher dissolution rate. This finding is a first step in the development of new, environmentally sound formulations of norflurazon (NFL), due to the capacity for increasing its dissolution rate and hydrosolubility, and thus diminishing the use of organic solvents. On the other hand, the effect of alpha- and gamma-cyclodextrin on the solubility of norflurazon in solution was also considered as a way of modifying its behaviour in the soil environment. Desorption studies of NFL from soils in the presence of alpha- and gamma-cyclodextrin were carried out using a batch equilibration method. The results obtained showed that alpha- and gamma-cyclodextrin greatly increased the removal of norflurazon previously adsorbed, proving the potential use of these CDs for in situ remediation of pesticide-contaminated soils.


Asunto(s)
Herbicidas/química , Piridazinas/química , Contaminantes del Suelo/aislamiento & purificación , alfa-Ciclodextrinas/química , gamma-Ciclodextrinas/química , Adsorción , Contaminación Ambiental/prevención & control , Herbicidas/análisis , Herbicidas/aislamiento & purificación , Piridazinas/análisis , Piridazinas/aislamiento & purificación , Contaminantes del Suelo/análisis , Solubilidad , Solventes , alfa-Ciclodextrinas/análisis , alfa-Ciclodextrinas/aislamiento & purificación , gamma-Ciclodextrinas/análisis , gamma-Ciclodextrinas/aislamiento & purificación
19.
Sci Total Environ ; 502: 699-705, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25310830

RESUMEN

Diuron desorption and mineralisation were studied on an amended and artificially contaminated soil. The amendments used comprised two different composted organic residues i.e., sewage sludge (SS) mixed with pruning wastes, and urban solid residues (USR), and two different solutions (with inorganic salts as the micronutrients and hydroxypropyl-ß-cyclodextrin (HPBCD)). After applying micronutrients to activate the soil flora, 15.5% mineralisation could be reached after 150 days, indicating that the soil has a potential capacity to mineralise the herbicide through biostimulation-assisted attenuation. Diuron mineralisation was also improved when HPBCD solutions were applied. Indeed, the extent of herbicide mineralisation reached 29.7% with this application. Moreover, both the lag phase and the half-life time (DT50) were reduced to 33 and 1,778 days, respectively, relative to the application of just micronutrients (i.e., 39 and 6297 days, respectively). Organic amendments were also applied (i.e., USR and SS) on the contaminated soil: it was found that the diuron mineralisation rate was improved as the amendment concentration increased. The joint application of all treatments investigated at the best conditions tested was conducted to obtain the best diuron mineralisation results. The micronutrient amendment plus 4% USR or SS amendment plus HPBCD solution (10-fold diuron initially spiked) caused an extent of diuron mineralisation 33.2 or 46.5%, respectively.


Asunto(s)
Diurona/análisis , Restauración y Remediación Ambiental/métodos , Herbicidas/análisis , Contaminantes del Suelo/análisis , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Biodegradación Ambiental , Semivida , Suelo/química
20.
J Agric Food Chem ; 50(7): 1918-21, 2002 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-11902933

RESUMEN

Complexes of the herbicide glyphosate (GPS) and the heavy metal Cu were studied by infrared spectroscopy under controlled pH, in order to know the mechanisms involved in the formation of these complexes. In CuGPS(-), the IR spectrum shows participation of the carboxylate and phosphonic moieties of the GPS molecule. The formation of the complex produces a lower symmetry in the phosphonate group because of loss of the resonance situation of PO(3)(2)(-) groups, with a subsequent split of their absorption bands. Carboxylate groups are participating by forming unidentate complexes. No conclusion is reached about the involvement of the amino group, but previous EPR findings indicate coordination of GPS to Cu via nitrogen. Consequently, glyphosate in this complex functions with a tridentate character by forming two chelate rings. A study of the CuGPSH species was not possible due to overlapping of its absorption bands with those of free GPS species.


Asunto(s)
Cobre/química , Glicina/análogos & derivados , Glicina/química , Herbicidas/química , Espectroscopía Infrarroja por Transformada de Fourier , Liofilización , Concentración de Iones de Hidrógeno , Espectrofotometría Infrarroja , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA