RESUMEN
The establishment of arterial and venous identity of endothelial cells is critical for the proper anatomic configuration and function of the vascular tree. Arterial and venous specification of endothelial cells is determined by genetic factors, although surrounding cells and hemodynamic forces may also contribute to vascular remodeling. This review provides an overview of the signaling pathways and related transcription factors implicated in differentiation of endothelial cells. We will discuss, in particular, the role of upstream and downstream effectors of Wnt, Sox, and Notch pathways. The understanding of the molecular mechanisms that orchestrate endothelial differentiation may have therapeutic relevance for diseases such as atherosclerosis, arteriovenous malformations, aneurysms, and others.
Asunto(s)
Arterias/fisiología , Endotelio Vascular/fisiología , Transducción de Señal/fisiología , Venas/fisiología , Animales , Hemodinámica/fisiología , Humanos , Receptores Notch/fisiología , Factores de Transcripción SOX/fisiología , Remodelación Vascular/fisiología , Proteínas Wnt/fisiologíaRESUMEN
PURPOSE OF REVIEW: The development of a functionally and anatomically correct vascular network is a complex phenomenon that requires the combined activity of different signaling pathways and transcription factors. Notch signaling activation, for instance, is crucial for arterial specification. Here, we discuss the current knowledge on how other signaling pathways cooperate with Notch to orchestrate arterial differentiation of embryonic and postnatal vasculature. RECENT FINDINGS: The role of Notch in vascular development and arterial differentiation is well known. However, it was found that canonical Wnt signaling may act upstream of Notch, upregulating Dll4 and inducing endothelial cells to acquire arterial characteristics. Furthermore, the transcription factor Sox17 may act as a link between Wnt and Notch in the induction of a correct arterio/venous differentiation. SUMMARY: In the past years, the research on vascular development was mostly focused on the mechanisms that regulate vessel growth. We now understand that in order to interfere with several vascular diseases (e.g. aneurysm, cerebral ischemia and stroke) or tumor vascularization, we need to understand the signals that direct arterio/venous specification. Here, we discuss the interplay between Notch, Wnt and Sox that exert a combined positive action on arterial differentiation.
Asunto(s)
Arterias/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores Notch/fisiología , Factores de Transcripción SOX/fisiología , Transducción de Señal/fisiología , Vía de Señalización Wnt/fisiología , Diferenciación Celular/fisiología , Células Endoteliales/fisiología , HumanosRESUMEN
Cancer cell plasticity facilitates the development of therapy resistance and malignant progression. De-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate that cancer cell plasticity can be exploited therapeutically by forcing the trans-differentiation of EMT-derived breast cancer cells into post-mitotic and functional adipocytes. Delineation of the molecular pathways underlying such trans-differentiation has motivated a combination therapy with MEK inhibitors and the anti-diabetic drug Rosiglitazone in various mouse models of murine and human breast cancer in vivo. This combination therapy provokes the conversion of invasive and disseminating cancer cells into post-mitotic adipocytes leading to the repression of primary tumor invasion and metastasis formation.
Asunto(s)
Adipocitos/citología , Neoplasias de la Mama/tratamiento farmacológico , Transdiferenciación Celular/efectos de los fármacos , Flavonoides/administración & dosificación , Metástasis de la Neoplasia/tratamiento farmacológico , Rosiglitazona/administración & dosificación , Células 3T3-L1 , Adipogénesis , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Flavonoides/farmacología , Humanos , Ratones , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-met/metabolismo , Rosiglitazona/uso terapéutico , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss-of-function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFß/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFß/BMP-dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3-MEK5-ERK5-MEF2 signaling axis that induces a strong increase in Kruppel-like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1-null ECs. KLF4 promotes TGFß/BMP signaling through the production of BMP6. Importantly, in endothelial-specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células HEK293 , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Proteína KRIT1 , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Mutación , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Transducción de Señal , Proteína Smad1/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
The functional diversity of the arterial and venous endothelia is regulated through a complex system of signalling pathways and downstream transcription factors. Here we report that the transcription factor Sox17, which is known as a regulator of endoderm and hemopoietic differentiation, is selectively expressed in arteries, and not in veins, in the mouse embryo and in mouse postnatal retina and adult. Endothelial cell-specific inactivation of Sox17 in the mouse embryo is accompanied by a lack of arterial differentiation and vascular remodelling that results in embryo death in utero. In mouse postnatal retina, abrogation of Sox17 expression in endothelial cells leads to strong vascular hypersprouting, loss of arterial identity and large arteriovenous malformations. Mechanistically, Sox17 acts upstream of the Notch system and downstream of the canonical Wnt system. These data introduce Sox17 as a component of the complex signalling network that orchestrates arterial/venous specification.
Asunto(s)
Arterias/metabolismo , Endodermo/metabolismo , Células Endoteliales/metabolismo , Proteínas HMGB/metabolismo , Morfogénesis/genética , Retina/metabolismo , Factores de Transcripción SOXF/metabolismo , Venas/metabolismo , Animales , Arterias/citología , Diferenciación Celular , Proliferación Celular , Embrión de Mamíferos , Endodermo/irrigación sanguínea , Endodermo/citología , Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Ratones , Neovascularización Patológica , Receptores Notch/genética , Receptores Notch/metabolismo , Retina/citología , Factores de Transcripción SOXF/genética , Transducción de Señal , Venas/citología , Proteínas Wnt/genética , Proteínas Wnt/metabolismoRESUMEN
The characterization of iron handling in neurons is still lacking, with contradictory and incomplete results. In particular, the relevance of non-transferrin-bound iron (NTBI), under physiologic conditions, during aging and in neurodegenerative disorders, is undetermined. This study investigates the mechanisms underlying NTBI entry into primary hippocampal neurons and evaluates the consequence of iron elevation on neuronal viability. Fluorescence-based single cell analysis revealed that an increase in extracellular free Fe(2+) (the main component of NTBI pool) is sufficient to promote Fe(2+) entry and that activation of either N-methyl-d-aspartate receptors (NMDARs) or voltage operated calcium channels (VOCCs) significantly potentiates this pathway, independently of changes in intracellular Ca(2+) concentration ([Ca(2+) ](i) ). The enhancement of Fe(2+) influx was accompanied by a corresponding elevation of reactive oxygen species (ROS) production and higher susceptibility of neurons to death. Interestingly, iron vulnerability increased in aged cultures. Scavenging of mitochondrial ROS was the most powerful protective treatment against iron overload, being able to preserve the mitochondrial membrane potential and to safeguard the morphologic integrity of these organelles. Overall, we demonstrate for the first time that Fe(2+) and Ca(2+) compete for common routes (i.e. NMDARs and different types of VOCCs) to enter primary neurons. These iron entry pathways are not controlled by the intracellular iron level and can be harmful for neurons during aging and in conditions of elevated NTBI levels. Finally, our data draw the attention to mitochondria as a potential target for the treatment of the neurodegenerative processes induced by iron dysmetabolism.