Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 58(1): 313-323, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36315197

RESUMEN

BACKGROUND: The measurement of the concentration of theranostic agents in vivo is essential for the assessment of their therapeutic efficacy and their safety regarding healthy tissue. To this end, there is a need for quantitative T1 measurements that can be obtained as part of a standard clinical imaging protocol applied to tumor patients. PURPOSE: To generate T1 maps from MR images obtained with the magnetization-prepared rapid gradient echo (MPRAGE) sequence. To evaluate the feasibility of the proposed approach on phantoms, animal and patients with brain metastases. STUDY TYPE: Pilot. PHANTOM/ANIMAL MODEL/POPULATION: Solutions containing contrast agents (chelated Gd3+ and iron nanoparticles), male rat of Wistar strain, three patients with brain metastases. FIELD STRENGTH/SEQUENCE: A 3-T and 7-T, saturation recovery (SR), and MPRAGE sequences. ASSESSMENT: The MPRAGE T1 measurement was compared to the reference SR method on phantoms and rat brain at 7-T. The robustness of the in vivo method was evaluated by studying the impact of misestimates of tissue proton density. Concentrations of Gd-based theranostic agents were measured at 3-T in gray matter and metastases in patients recruited in NanoRad clinical trial. STATISTICAL TESTS: A linear model was used to characterize the relation between T1 measurements from the MPRAGE and the SR acquisitions obtained in vitro at 7-T. RESULTS: The slope of the linear model was 0.966 (R2  = 0.9934). MPRAGE-based T1 values measured in the rat brain were 1723 msec in the thalamus. MPRAGE-based T1 values measured in patients in white matter and gray matter amounted to 747 msec and 1690 msec. Mean concentration values of Gd3+ in metastases were 61.47 µmol. DATA CONCLUSION: The T1 values obtained in vitro and in vivo support the validity of the proposed approach. The concentrations of Gd-based theranostic agents may be assessed in patients with metastases within a standard clinical imaging protocol using the MPRAGE sequence. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Masculino , Animales , Ratas , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Medicina de Precisión , Ratas Wistar , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología
2.
Inorg Chem ; 61(6): 2945-2953, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35119281

RESUMEN

In this paper, we report the chemical strategy followed to obtain, in a direct way, nanoparticles of the RbxMn[Fe(CN)6](x+2)/3·nH2O (RbMnFe) Prussian blue analogue with the aim of keeping the switching ability of this compound at the nanoscale. The switching properties come from a reversible electron transfer between the iron and manganese ions and depends on the rubidium content in the structure that has to be higher than 0.6. Despite the multifunctionality of this family of compounds and its interest in various applications, no systematic studies were performed to obtain well-defined nanoparticles. This paper relates to such an investigation. To draw relationship between size reduction, composition, and switching properties, a special attention was brought to the determination of the composition through elemental analysis and structure refinement of powder X-ray diffraction patterns together with infrared spectroscopy and elemental analysis. Several chemical parameters were explored to control both the size reduction and the composition following a direct synthetic approach. The results show that the smaller the particles, the lower the rubidium content. This observation might prevent the observation of switching properties on very small particles. Despite this antagonist effect, we achieved switchable particles of around 200 nm without any use of surfactant. Moreover, the size reduction is associated with the observation of the electron transfer down to 52% of rubidium in the nanoparticles against 64% in microparticles. This work is of particular interest in processing such nanoparticles into devices.

3.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068875

RESUMEN

Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a "theranostic approach" that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe-/- mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.


Asunto(s)
Aterosclerosis/patología , Emulsiones , Nanopartículas de Magnetita/administración & dosificación , Imagen Molecular/métodos , Anticuerpos de Cadena Única/inmunología , Nanomedicina Teranóstica/métodos , Animales , Aterosclerosis/inmunología , Medios de Contraste , Femenino , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Polietilenglicoles
4.
Nanomedicine ; 22: 102082, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31404651

RESUMEN

Due to the wealth of actors involved in the development of atherosclerosis, molecular imaging based on the targeting of specific markers would substantiate the diagnosis of life-threatening atheroma plaques. To this end, TEG4 antibody is a promising candidate targeting the activated platelets (integrin αIIbß3) highly represented within the plaque. In this study, scFv antibody fragments were used to functionalize multimodal imaging nanoparticles. This grafting was performed in a regio-selective way to preserve TEG4 activity and the avidity of the nanoparticles was studied with respect to the number of grafted antibodies. Subsequently, taking advantage of the nanoparticle bimodality, both near infrared fluorescence and magnetic resonance imaging of the atheroma plaque were performed in the ApoE-/- mouse model. Here we describe the design of the targeted nanoparticles, and a quantification method for their detection in mice, both ex vivo and in vivo, highlighting their value as a potential diagnosis agent.


Asunto(s)
Aterosclerosis/diagnóstico , Imagen Molecular , Imagen Multimodal , Nanopartículas/química , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Aterosclerosis/patología , Fluorescencia , Imagen por Resonancia Magnética , Masculino , Ratones , Conejos , Distribución Tisular
5.
Biochim Biophys Acta Gen Subj ; 1861(6): 1587-1596, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28179102

RESUMEN

BACKGROUND: In the context of systematically administered nanomedicines, the physicochemistry of NP surfaces must be controlled as a prerequisite to improve blood circulation time, and passive and active targeting. In particular, there is a real need to develop NP stealth and labelling for both in vivo and microscopic fluorescence imaging in a mice model. METHODS: We have synthesized NIR/red dually fluorescent silica nanoparticles of 19nm covalently covered by a PEG layer of different grafting density in the brush conformational regime by using a reductive amination reaction. These particles were characterized by TEM, DRIFT, DLS, TGA, ζ potential measurements, UV-vis and fluorescence spectroscopy. Prostate tumors were generated in mice by subcutaneous injection of RM1-CMV-Fluc cells. Tumor growth was monitored by BLI after a D-luciferin injection. Four samples of PEGylated fluorescent NPs were individually intravenously injected into 6 mice (N=6, total 24 mice). Nanoparticle distribution was investigated using in vivo fluorescence reflectance imaging (FRI) over 48h and microscopy imaging was employed to localize the NPs within tumors in vitro. RESULTS: Fluorescent NP accumulation, due to the enhanced permeability and retention (EPR) effect, increases gradually as a function of increased PEG surface grafting density with a huge difference observed for the highest density grafting. For the highest grafting density, a blood circulation time of up to 24h was observed with a strong reduction in uptake by the liver. In vivo experimental results suggest that the biodistribution of NPs is very sensitive to slight variations in surface grafting density when the NPs present a high curvature radius. CONCLUSION: This study underlines the need to compensate a high curvature radius with a PEG-saturated NP surface to improve blood circulation and accumulation within tumors through the EPR effect. Dually fluorescent NPs PEGylated to saturation display physical properties useful for assessing the susceptibility of tumors to the EPR effect. GENERAL SIGNIFICANCE: Control of the physicochemical features of nanoparticle surfaces to improve blood circulation times and monitoring of the EPR effect. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Asunto(s)
Colorantes Fluorescentes/administración & dosificación , Imagen Molecular/métodos , Nanomedicina/métodos , Nanopartículas/administración & dosificación , Polietilenglicoles/química , Neoplasias de la Próstata/diagnóstico por imagen , Dióxido de Silicio/administración & dosificación , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Inyecciones Intravenosas , Mediciones Luminiscentes , Masculino , Ratones Transgénicos , Nanopartículas/química , Nanopartículas/metabolismo , Tamaño de la Partícula , Permeabilidad , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Propiedades de Superficie , Factores de Tiempo , Distribución Tisular
6.
Bioconjug Chem ; 27(3): 569-75, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26751997

RESUMEN

Although the application of nanotechnologies to atherosclerosis remains a young field, novel strategies are needed to address this public health issue. In this context, the magnetic resonance imaging (MRI) approach has been gradually investigated in order to enable image-guided treatments. In this contribution, we report a new approach based on nucleoside-lipids allowing the synthesis of solid lipid nanoparticles (SLN) loaded with iron oxide particles and therapeutic agents. The insertion of nucleoside-lipids allows the formation of stable SLNs loaded with prostacycline (PGI2) able to inhibit platelet aggregation. The new SLNs feature better relaxivity properties in comparison to the clinically used contrast agent Feridex, indicating that SLNs are suitable for image-guided therapy.


Asunto(s)
Aterosclerosis/terapia , Epoprostenol/uso terapéutico , Lípidos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas , Epoprostenol/administración & dosificación
7.
Small ; 11(19): 2323-32, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25580816

RESUMEN

In this study, we report the synthesis of a nanoscaled drug delivery system, which is composed of a gold nanorod-like core and a mesoporous silica shell (GNR@MSNP) and partially uploaded with phase-changing molecules (1-tetradecanol, TD, T(m) 39 °C) as gatekeepers, as well as its ability to regulate the release of doxorubicin (DOX). Indeed, a nearly zero premature release is evidenced at physiological temperature (37 °C), whereas the DOX release is efficiently achieved at higher temperature not only upon external heating, but also via internal heating generated by the GNR core under near infrared irradiation. When tagged with folate moieties, GNR@MSNPs target specifically to KB cells, which are known to overexpress the folate receptors. Such a precise control over drug release, combining with the photothermal effect of GNR cores, provides promising opportunity for localized synergistic photothermal ablation and chemotherapy. Moreover, the performance in killing the targeted cancer cells is more efficient compared with the single phototherapeutic modality of GNR@MSNPs. This versatile combination of local heating, phototherapeutics, chemotherapeutics and gating components opens up the possibilities for designing multifunctional drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Oro/química , Rayos Infrarrojos , Nanotubos/química , Fototerapia/métodos , Dióxido de Silicio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Ácido Fólico/farmacología , Calor , Humanos , Microscopía Fluorescente , Nanotubos/ultraestructura , Porosidad
8.
Langmuir ; 31(24): 6675-80, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26035091

RESUMEN

The preparation of magnetic inks stable over time made of L10-ordered FePt nanoparticles, thiol-ended poly(ethylene glycol) methyl ether (mPEO-SH) compatibilizing macromolecules and asymmetric polystyrene-block-poly(ethylene oxide) copolymers (BCP) as a subsequent self-organizing medium was optimized. It was demonstrated that the use of sacrificial MgO shells as physical barriers during the annealing stage for getting the L10-ordered state makes easier and more efficient the anchoring of compatibilizing PEO macromolecules onto the nanoparticles surface. L10-FePt grafted nanoparticles have shown a good colloidal stability and affinity with the PEO domains of the BCP leading to L10-FePt/BCP composite thin layers with individual magnetic dots dispersed in the BCP matrix.

9.
Nanotechnology ; 26(1): 015704, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25490677

RESUMEN

Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the 'specific absorption rate (SAR)', is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 °C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m(-1) in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

10.
Part Fibre Toxicol ; 12: 1, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25605549

RESUMEN

BACKGROUND: The lung epithelium constitutes the first barrier against invading pathogens and also a major surface potentially exposed to nanoparticles. In order to ensure and preserve lung epithelial barrier function, the alveolar compartment possesses local defence mechanisms that are able to control bacterial infection. For instance, alveolar macrophages are professional phagocytic cells that engulf bacteria and environmental contaminants (including nanoparticles) and secrete pro-inflammatory cytokines to effectively eliminate the invading bacteria/contaminants. The consequences of nanoparticle exposure in the context of lung infection have not been studied in detail. Previous reports have shown that sequential lung exposure to nanoparticles and bacteria may impair bacterial clearance resulting in increased lung bacterial loads, associated with a reduction in the phagocytic capacity of alveolar macrophages. RESULTS: Here we have studied the consequences of SiO2 nanoparticle exposure on Pseudomonas aeruginosa clearance, Pseudomonas aeruginosa-induced inflammation and lung injury in a mouse model of acute pneumonia. We observed that pre-exposure to SiO2 nanoparticles increased mice susceptibility to lethal pneumonia but did not modify lung clearance of a bioluminescent Pseudomonas aeruginosa strain. Furthermore, internalisation of SiO2 nanoparticles by primary alveolar macrophages did not reduce the capacity of the cells to clear Pseudomonas aeruginosa. In our murine model, SiO2 nanoparticle pre-exposure preferentially enhanced Pseudomonas aeruginosa-induced lung permeability (the latter assessed by the measurement of alveolar albumin and IgM concentrations) rather than contributing to Pseudomonas aeruginosa-induced lung inflammation (as measured by leukocyte recruitment and cytokine concentration in the alveolar compartment). CONCLUSIONS: We show that pre-exposure to SiO2 nanoparticles increases mice susceptibility to lethal pneumonia but independently of macrophage phagocytic function. The deleterious effects of SiO2 nanoparticle exposure during Pseudomonas aeruginosa-induced pneumonia are related to alterations of the alveolar-capillary barrier rather than to modulation of the inflammatory responses.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Nanopartículas/toxicidad , Neumonía Bacteriana/inducido químicamente , Infecciones por Pseudomonas/inducido químicamente , Pseudomonas aeruginosa/patogenicidad , Alveolos Pulmonares/efectos de los fármacos , Óxidos de Selenio/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/microbiología , Citocinas/análisis , Inmunoglobulina M/análisis , Exposición por Inhalación , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Masculino , Ratones Endogámicos C57BL , Nanopartículas/química , Tamaño de la Partícula , Fagocitosis/efectos de los fármacos , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Alveolos Pulmonares/irrigación sanguínea , Óxidos de Selenio/química , Propiedades de Superficie , Análisis de Supervivencia
11.
Nanomedicine ; 11(4): 927-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25684334

RESUMEN

Atherosclerosis is an inflammatory disease associated with the formation of atheroma plaques likely to rupture in which platelets are involved both in atherogenesis and atherothrombosis. The rupture is linked to the molecular composition of vulnerable plaques, causing acute cardiovascular events. In this study we propose an original targeted contrast agent for molecular imaging of atherosclerosis. Versatile USPIO (VUSPIO) nanoparticles, enhancing contrast in MR imaging, were functionalised with a recombinant human IgG4 antibody, rIgG4 TEG4, targeting human activated platelets. The maintenance of immunoreactivity of the targeted VUSPIO against platelets was confirmed in vitro by flow cytometry, transmission electronic and optical microscopy. In the atherosclerotic ApoE(-/-) mouse model, high-resolution ex vivo MRI demonstrated the selective binding of TEG4-VUSPIO on atheroma plaques. It is noteworthy that the rationale for targeting platelets within atherosclerotic lesions is highlighted by our targeted contrast agent using a human anti-αIIbß3 antibody as a targeting moiety. FROM THE CLINICAL EDITOR: Current clinical assessment of atherosclerotic plagues is suboptimal. The authors in the article designed functionalized superparamagnetic iron oxide nanoparticles with TEG4, a recombinant human antibody, to target activated platelets. By using MRI, these nanoparticles can be utilized to study the process of atheroma pathogenesis.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Plaquetas , Medios de Contraste/farmacología , Imagen Molecular/métodos , Nanopartículas/química , Placa Aterosclerótica/patología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Animales , Anticuerpos Monoclonales/química , Medios de Contraste/química , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Placa Aterosclerótica/metabolismo
12.
Langmuir ; 30(5): 1424-34, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24483291

RESUMEN

We report an improved synthesis of colloidal Ag(n) nanoprisms using carboxyl compounds (citrate or succinate) and long chain macromolecules (polyvinylpyrrolidone (PVP)). The side-facet structure of the triangular nanostructure was determined in detail using electron tomography in scanning transmission mode (3D STEM) and HRTEM. It has been found that they are built up by {100} facets with a single parallel twin plane. The best conditions for producing uniform Ag nanoprisms with tunable sizes and high yields in the presence of carboxyl compounds additive system are described, and a growth mechanism is proposed. This approach provides also a route to synthesize Ag nanodisks and Au-Ag alloyed nanoprisms.

13.
Adv Sci (Weinh) ; 11(24): e2309267, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639398

RESUMEN

Single-molecule localization microscopy has proved promising to unravel the dynamics and molecular architecture of thin biological samples down to nanoscales. For applications in complex, thick biological tissues shifting single-particle emission wavelengths to the shortwave infrared (SWIR also called NIR II) region between 900 to 2100 nm, where biological tissues are more transparent is key. To date, mainly single-walled carbon nanotubes (SWCNTs) enable such applications, but they are inherently 1D objects. Here, 0D ultra-small luminescent gold nanoclusters (AuNCs, <3 nm) and ≈25 nm AuNC-loaded-polymeric particles that can be detected at the single-particle level in the SWIR are presented. Thanks to high brightness and excellent photostability, it is shown that the dynamics of the spherical polymeric particles can be followed at the single-particle level in solution at video rates for minutes. We compared single particle tracking of AuNC-loaded-polymeric particles with that of SWCNT diffusing in agarose gels demonstrating the specificity and complementarity of diffusion properties of these SWIR-emitting nano-objects when exploring a complex environment. This extends the library of photostable SWIR emitting nanomaterials to 0D nano-objects of variable size for single-molecule localization microscopy in the second biological window, opening unprecedented possibilities for mapping the structure and dynamics of complex biological systems.

14.
Langmuir ; 29(5): 1551-61, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23286375

RESUMEN

In an attempt to fabricate low index metamaterials by a bottom-up approach, meta-atoms constituted of silica-coated silver nanoparticles are assembled by a Langmuir-Schaefer technique into thin films of large area and well-controlled thickness. The silica shells ensure a constant distance between the silver cores, hence providing a constant coupling of the localized surface plasmon resonance (LSPR) of the nanoparticles in the assembled composite material. The optical response is studied by normal angle spectral reflectance measurements and by variable angle spectroscopic ellipsometry. The normal incidence data are described well in the framework of a single effective Lorentz oscillator model. The resonance of the assembled material is blue-shifted and shows no significant broadening with respect to the absorption band of the individual nanoparticles. The observation of these two effects is enabled by the core-shell structure of the meta-atoms that prevents aggregation of the metallic cores. The ellipsometry study confirms the general behavior and reveals the natural birefringence of the few-layer materials. The amplitude of the observed resonance is weaker than expected from the Maxwell-Garnett mixing rule. This well-characterized system may constitute a good model for numerical simulations.

15.
Inorg Chem ; 52(21): 12811-7, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24156475

RESUMEN

ZnO nanocrystals were prepared from polyol-mediated synthesis. Two key parameters, that is, the zinc precursor concentration and the alcohol mixture chosen as synthesis medium, were varied. The increase of the precursor concentration and the decrease of the permittivity of the alcohol mixture were shown to favor the crystallite growth, leading to crystallite sizes ranging from 5 to 35 nm. The aggregation behavior of the nanocrystal units to form or not polycrystalline spheres, depending on the van der Walls interaction density, was shown and explained. Every sample was accurately characterized by X-ray diffraction; cell parameters were extracted from full pattern matching refinements. A clear correlation between crystallite size and cell parameters, that is, an asymptotic decrease of a and c cell parameters versus the crystallite size, was established. A simple model was also successfully developed to interpret the as-established correlation.

16.
Part Fibre Toxicol ; 10: 2, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23388071

RESUMEN

BACKGROUND: The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. RESULTS: Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. CONCLUSION: The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs.


Asunto(s)
Endocitosis , Células Epiteliales/efectos de los fármacos , Citometría de Flujo/métodos , Microscopía Confocal/métodos , Nanopartículas , Dióxido de Silicio , Adsorción , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/fisiología , Células Epiteliales/metabolismo , Colorantes Fluorescentes/química , Humanos , Nanopartículas/química , Nanopartículas/toxicidad , Tamaño de la Partícula , Dióxido de Silicio/química , Dióxido de Silicio/toxicidad , Propiedades de Superficie , Azul de Tripano/química
17.
Nucleic Acids Res ; 39(4): 1595-609, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21078679

RESUMEN

Cationic lipids are used for delivering nucleic acids (lipoplexes) into cells for both therapeutic and biological applications. A better understanding of the identified key-steps, including endocytosis, endosomal escape and nuclear delivery is required for further developments to improve their efficacy. Here, we developed a labelling protocol using aminated nanoparticles as markers for plasmid DNA to examine the intracellular route of lipoplexes in cell lines using transmission electron microscopy. Morphological changes of lipoplexes, membrane reorganizations and endosomal membrane ruptures were observed allowing the understanding of the lipoplex mechanism until the endosomal escape mediated by cationic lipids. The study carried out on two cationic lipids, bis(guanidinium)-tris(2-aminoethyl)amine-cholesterol (BGTC) and dioleyl succinyl paramomycin (DOSP), showed two pathways of endosomal escape that could explain their different transfection efficiencies. For BGTC, a partial or complete dissociation of DNA from cationic lipids occurred before endosomal escape while for DOSP, lipoplexes remained visible within ruptured vesicles suggesting a more direct pathway for DNA release and endosome escape. In addition, the formation of new multilamellar lipid assemblies was noted, which could result from the interaction between cationic lipids and cellular compounds. These results provide new insights into DNA transfer pathways and possible implications of cationic lipids in lipid metabolism.


Asunto(s)
Colesterol/análogos & derivados , ADN/química , Guanidinas/química , Nanopartículas/química , Paromomicina/análogos & derivados , Transfección , Línea Celular Tumoral , Colesterol/química , Endosomas/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Paromomicina/química
18.
Chemosphere ; 303(Pt 2): 135158, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35640691

RESUMEN

Anthropic activities such as open pit mining, amplify the natural erosion of metals contained in the soils, particularly in New Caledonia, leading to atmospheric emission of nickel oxide nanoparticles (NiONPs). These particles are produced during extraction end up in aquatic ecosystems through deposition or leaching in the rivers. Despite alarming freshwater Ni concentrations, only few studies have focused on the cellular and molecular mechanisms of NiONPs toxicity on aquatic organisms and particularly on eels. Those fish are known to be sensitive to metal contamination, especially their liver, which is a key organ for lipid metabolism, detoxification and reproduction. The objective of this study was to assess in vitro the cytotoxic effects of NiONPs on Anguilla japonica hepatocytes, HEPA-E1. HEPA-E1 were exposed to NiONPs (0.5-5 µg/cm2) for 4 or 24 h. Several endpoints were studied: (i) viability, (ii) ROS production, SOD activity and selected anti-oxidant genes expression, (iii) inflammation, (iv) calcium signalling, (v) mitochondrial function and (vi) apoptosis. The results evidenced that NiONPs induce a decrease of cell viability and an increase in oxidative stress with a significant superoxide anion production. An increase of mitochondrial calcium concentration and a decrease of mitochondrial membrane potential were observed, leading to apoptosis. These results underline the potential toxic impact of NiONPs on eels living in mining areas. Therefore, eel exposure to NiONPs can affect their migration and reproduction in New Caledonia.


Asunto(s)
Anguilla , Ecosistema , Anguilla/metabolismo , Animales , Calcio/metabolismo , Hepatocitos , Nueva Caledonia
19.
Nanotoxicology ; 16(1): 29-51, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35090355

RESUMEN

In New Caledonia, anthropic activities, such as mining, increase the natural erosion of soils in nickel mines, which in turn, releases nickel oxide nanoparticles (NiONPs) into the atmosphere. Pulmonary vascular endothelial cells represent one of the primary targets for inhaled nanoparticles. The objective of this in vitro study was to assess the cytotoxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC). Special attention will be given to the level of oxidative stress and calcium signaling, which are involved in the physiopathology of cardiovascular diseases. HPAEC were exposed to NiONPs (0.5-150 µg/cm2) for 4 or 24 h. The following different endpoints were studied: (i) ROS production using CM-H2DCF-DA probe, electron spin resonance, and MitoSOX probe; the SOD activity was also measured (ii) calcium signaling with Fluo4-AM, Rhod-2, and Fluo4-FF probes; (iii) inflammation by IL-6 production and secretion and, (iv) mitochondrial dysfunction and apoptosis with TMRM and MitoTracker probes, and AnnexinV/PI. Our results have evidenced that NiONPs induced oxidative stress in HPAEC. This was demonstrated by an increase in ROS production and a decrease in SOD activity, the two mechanisms seem to trigger a pro-inflammatory response with IL-6 secretion. In addition, NiONPs exposure altered calcium homeostasis inducing an increased cytosolic calcium concentration ([Ca2+]i) that was significantly reduced by the extracellular calcium chelator EGTA and the TRPV4 inhibitor HC-067047. Interestingly, exposure to NiONPs also altered TRPV4 activity. Finally, HPAEC exposure to NiONPs increased intracellular levels of both ROS and calcium ([Ca2+]m) in mitochondria, leading to mitochondrial dysfunction and HPAEC apoptosis.


Asunto(s)
Señalización del Calcio , Células Endoteliales , Nanopartículas del Metal , Mitocondrias , Estrés Oxidativo , Canales Catiónicos TRPV , Calcio/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Nanopartículas del Metal/efectos adversos , Mitocondrias/patología , Níquel/efectos adversos , Arteria Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Canales Catiónicos TRPV/metabolismo
20.
NMR Biomed ; 24(4): 413-24, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21192086

RESUMEN

The noninvasive imaging of atherosclerotic plaques at an early stage of atherogenesis remains a major challenge for the evaluation of the pathologic state of patients at high risk of acute coronary syndromes. Recent studies have emphasized the importance of platelet-endothelial cell interactions in atherosclerosis-prone arteries at early stages, and the prominent role of P-selectin in the initial loose contact between platelets and diseased vessel walls. A specific MR contrast agent was developed here for the targeting, with high affinity, of P-selectin expressed in large amounts on activated platelets and endothelial cells. For this purpose, PEGylated dextran/iron oxide nanoparticles [PEG, poly(ethylene glycol)], named versatile ultrasmall superparamagnetic iron oxide (VUSPIO) particles, labeled with rhodamine were coupled to an anti-human P-selectin antibody (VH10). Flow cytometry and microscopy experiments on human activated platelets were highly correlated with MRI (performed at 4.7 and 0.2 T), with a 50% signal decrease in T(2) and T(1) values corresponding to the strong labeling of activated vs resting platelets. The number of 1000 VH10-VUSPIO nanoparticles attained per activated platelet appeared to be optimal for the detection of hypo- and hyper-signals in the platelet pellet on T(2) - and T(1) -weighted MRI. Furthermore, in vivo imaging of atherosclerotic plaques in ApoE mice at 4.7 T showed a spatial resolution adapted to the imaging of intimal thickening and a hypo-signal at 4.7 T, as a result of the accumulation of VH10-VUSPIO nanoparticles in the plaque. Our work provides support for the further assessment of the use of VH10-VUSPIO nanoparticles as a promising imaging modality able to identify the early stages of atherosclerosis with regard to the pertinence of both the target and the antibody-conjugated contrast agent used.


Asunto(s)
Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Plaquetas/metabolismo , Imagen por Resonancia Magnética/métodos , Selectina-P/sangre , Activación Plaquetaria , Animales , Anticuerpos/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Apolipoproteínas E/deficiencia , Plaquetas/efectos de los fármacos , Dextranos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Citometría de Flujo , Humanos , Nanopartículas de Magnetita , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Activación Plaquetaria/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Receptores de Trombina/metabolismo , Trombina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA