Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768982

RESUMEN

In view of endowing the surface of abutments, a component of titanium dental implant systems, with antioxidant and antimicrobial properties, a surface layer coated with epigallocatechin gallate (EGCg), a polyphenol belonging to the class of flavonoids, was built on titanium samples. To modulate interfacial properties, EGCg was linked either directly to the surface, or after populating the surface with terminally linked polyethyleneglycol (PEG) chains, Mw ~1600 Da. The underlying assumption is that fouling-resistant, highly hydrated PEG chains could reduce non-specific bioadhesion and magnify intrinsic EGCg properties. Treated surfaces were investigated by a panel of surface/interfacial sensitive techniques, to provide chemico-physical characterization of the surface layer and its interfacial environment. Results show: (i) successful EGCg coupling for both approaches; (ii) that both approaches endow the Ti surface with the same antioxidant properties; (iii) that PEG-EGCg coated surfaces are more hydrophilic and show a significantly higher (>50%) interaction force with water. Obtained results build up a rationale basis for evaluation of the merits of finely tuning interfacial properties of polyphenols coated surfaces in biological tests.


Asunto(s)
Catequina , Implantes Dentales , Antioxidantes/farmacología , Titanio , Polifenoles , Propiedades de Superficie
2.
Odontology ; 107(4): 521-529, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31197618

RESUMEN

The aim of this study was to evaluate the surface tension and the antimicrobial activity in infected dentin of a NaOCl solution combined with an etidronate powder (Dual Rinse® HEDP), compared to pure NaOCl and the classic NaOCl + EDTA irrigating sequence, respectively. The surface tension of three irrigants was measured by Wilhelmy technique. To evaluate the antimicrobial activity of the solutions, 26 human teeth were contaminated for 5 days with E. faecalis. After bacterial contamination, ten samples were irrigated with NaOCl followed by EDTA, another ten with NaOCl/Dual Rinse® HEDP, and four were used as positive controls. Two specimens not contaminated were used as negative controls. After live/dead BacLight staining, samples were examined by CLSM for analyzing % of residual live and dead cells. Comparison of bacterial viability between and within groups was performed using the Mann-Whitney test for independent samples and the Wilcoxon signed-rank test, respectively. The mean surface tension of EDTA was significantly lower than that of the other irrigants tested (p < 0.001). Conversely, the surface tension of NaOCl/Dual Rinse® HEDP solution was significantly higher than that of all the other solutions (p < 0.001). Residual bacterial viability in the NaOCl/Dual Rinse® HEDP (1.71%) was significantly lower (p = 0.019) than in the NaOCl + EDTA group (3.77%). All of the experimental groups showed significantly lower proportion of viable bacterial cells than the positive control group (p < 0.01). Clinical relevance adding etidronate to NaOCl increases its antimicrobial effect in dentinal tubules even though increases its surface tension.


Asunto(s)
Ácido Etidrónico , Irrigantes del Conducto Radicular , Dentina , Desinfección , Ácido Edético , Enterococcus faecalis , Humanos , Hipoclorito de Sodio , Tensión Superficial
3.
Int J Mol Sci ; 20(3)2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30744023

RESUMEN

BACKGROUND: The process of osseointegration of dental implants is characterized by healing phenomena at the level of the interface between the surface and the bone. Implant surface modification has been introduced in order to increase the level of osseointegration. The purpose of this study is to evaluate the influence of biofunctional coatings for dental implants and the bone healing response in a rabbit model. The implant surface coated with collagen type I was analyzed through X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), micro-CT and histologically. METHODS: The sandblasted and double acid etched surface coated with collagen type I, and uncoated sandblasted and double acid etched surface were evaluated by X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) analysis in order evaluate the different morphology. In vivo, a total of 36 implants were positioned in rabbit articular femoral knee-joint, 18 fixtures for each surface. Micro-CT scans, histological and histomorphometrical analysis were conducted at 15, 30 and 60 days. RESULTS: A histological statistical differences were evident at 15, 30 and 60 days (p < 0.001). Both implant surfaces showed a close interaction with newly formed bone. Mature bone appeared in close contact with the surface of the fixture. The AFM outcome showed a similar roughness for both surfaces. CONCLUSION: However, the final results showed that a coating of collagen type I on the implant surface represents a promising procedure able to improve osseointegration, especially in regions with a low bone quality.


Asunto(s)
Materiales Biomiméticos , Biomimética , Materiales Biocompatibles Revestidos , Colágeno Tipo I , Animales , Materiales Biomiméticos/química , Biomimética/métodos , Materiales Biocompatibles Revestidos/química , Colágeno Tipo I/química , Histocitoquímica , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Conejos , Propiedades de Superficie , Factores de Tiempo , Microtomografía por Rayos X
4.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754668

RESUMEN

Biochemical modification of titanium surfaces (BMTiS) entails immobilization of biomolecules to implant surfaces in order to induce specific host responses. This crossover randomized clinical trial assesses clinical success and marginal bone resorption of dental implants bearing a surface molecular layer of covalently-linked hyaluronan in comparison with control implants up to 36 months after loading. Patients requiring bilateral implant rehabilitation received hyaluronan covered implants in one side of the mouth and traditional implants in the other side. Two months after the first surgery, a second surgery was undergone to uncover the screw and to place a healing abutment. After two weeks, the operator proceeded with prosthetic procedures. Implants were evaluated by periapical radiographs and the crestal bone level was recorded at mesial and distal sites-at baseline and up to 36 months. One hundred and six implants were positioned, 52 HY-coated, and 48 controls were followed up. No differences were observed in terms of insertion and stability, wound healing, implant success, and crestal bone resorption at any time considered. All interventions had an optimal healing, and no adverse events were recorded. This trial shows, for the first time, a successful use in humans of biochemical-modified implants in routine clinical practice and in healthy patients and tissues with satisfactory outcomes.


Asunto(s)
Implantes Dentales , Ácido Hialurónico , Titanio , Anciano , Femenino , Humanos , Ácido Hialurónico/química , Masculino , Persona de Mediana Edad , Estructura Molecular , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Titanio/química
5.
J Mater Sci Mater Med ; 26(4): 159, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25786396

RESUMEN

The paper presents results of physico-chemical and biological investigations of a surface-engineered synthetic bone filler. Surface analysis confirms that the ceramic phosphate granules present a collagen nanolayer to the surrounding environment. Cell cultures tests show that, in agreement with literature reports, surface-immobilized collagen molecular cues can stimulate progression along the osteogenic pathway of undifferentiated human mesenchymal cells. Finally, in vivo test in a rabbit model of critical bone defects shows statistically significant increase of bone volume and mineral apposition rate between the biomimetic bone filler and collagen-free control. All together, obtained data confirm that biomolecular surface engineering can upgrade the properties of implant device, by promoting more specific and targeted implant-host cells interactions.


Asunto(s)
Regeneración Ósea/fisiología , Sustitutos de Huesos/química , Sustitutos de Huesos/uso terapéutico , Fosfatos de Calcio/química , Durapatita/química , Fracturas del Fémur/terapia , Animales , Materiales Biomiméticos/síntesis química , Regeneración Ósea/efectos de los fármacos , Fracturas del Fémur/patología , Masculino , Ensayo de Materiales , Conejos , Propiedades de Superficie , Resultado del Tratamiento
6.
Int Orthop ; 39(10): 2041-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26206261

RESUMEN

PURPOSE: To investigate the effects of titanium implants functionalised with collagen type I (TiColl) on bone regeneration and osteointegration in a healthy and osteopenic rat animal model. METHOD: TiColl screws were implanted into the femoral condyles of healthy and osteopenic rats and compared with acid-etched titanium (Ti) screws. The osteointegration process was evaluated by a complementary approach combining microtomographic, histological, histomorphometric and biomechanical investigations at four and 12 weeks. RESULTS: The TiColl screw also ensured a greater mechanical stability; the push-out values for TiColl screws increased from four to 12 weeks (+28 %). The energy necessary to detach the bone from the screw was significantly higher for TiColl-functionalised screws in comparison to Ti screws (+23 %) at 12 weeks. Histomorphometric investigation revealed that total bone-to-implant contact was higher in TiColl screws in comparison to Ti screws (P < 0.05) and at epiphyseal level, increased bone-to-implant contact was found with TiColl screws in comparison to Ti screws (P < 0.05) in an ovariectomy (OVX) condition. A significant increase in the measured total bone ingrowth from four to 12 weeks was detected for both materials, but more significant for the TiColl material (P < 0.0005). Finally, bone ingrowth in the TiColl group was significantly higher (P < 0.005) in comparison to that of Ti screws in the SHAM condition at metaphyseal level at 12 weeks. CONCLUSION: The present results showed that TiColl is effective in promoting implant osteointegration even in compromised bone.


Asunto(s)
Enfermedades Óseas Metabólicas/cirugía , Colágeno Tipo I/farmacología , Fémur/efectos de los fármacos , Oseointegración/efectos de los fármacos , Animales , Regeneración Ósea/efectos de los fármacos , Regeneración Ósea/fisiología , Tornillos Óseos , Materiales Biocompatibles Revestidos , Modelos Animales de Enfermedad , Femenino , Fémur/fisiopatología , Fémur/cirugía , Humanos , Oseointegración/fisiología , Diseño de Prótesis , Ratas , Ratas Sprague-Dawley , Titanio
7.
J Oral Implantol ; 41(1): 10-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25699642

RESUMEN

Osteoimmunology is the crosstalk between cells from the immune and skeletal systems, suggesting a role of pro-inflammatory cytokines in the stimulation of osteoclast activity. Endotoxin or bacterial challenges to inflammatory cells are directly relevant to dental implant pathologies involving bone resorption, such as osseointegration failure and peri-implantitis. While the endotoxin amount on implant devices is regulated by standards, it is unknown whether commercially available dental implants elicit different levels of adherent-endotoxin stimulated cytokines. The objective of this work is to develop a model system and evaluate endotoxin-induced expression of pro-inflammatory cytokine genes relevant to osteoclast activation on commercially available dental implants. Murine J774-A1 macrophages were cultured on Ti disks with different level of lipopolysaccharide (LPS) contamination to define the time-course of the inflammatory response to endotoxin, as evaluated by reverse transcription polymerase chain reaction analysis. The developed protocol was then used to measure adherent endotoxin on commercially available packaged and sterile dental implants in the "as-implanted" condition. Results show that tested dental implants induce variable expression of endotoxin-stimulated genes, sometimes above the level expected to promote bone resorption in vivo. Results are unaffected by the specific surface treatment; rather, they likely reflect care in cleaning and packaging protocols. In conclusion, expression of genes that enhance osteoclast activity through endotoxin stimulation of inflammatory cells is widely different on commercially available dental implants. A reappraisal of the clinical impact of adherent endotoxins on dental (and bone) implant devices is required in light of increasing knowledge on crosstalk between cells from the immune and skeletal systems.


Asunto(s)
Implantes Dentales , Endotoxinas/inmunología , Grabado Ácido Dental/métodos , Animales , Resorción Ósea/inmunología , Línea Celular , Quimiocina CCL2/análisis , Ciclooxigenasa 2/análisis , Citocinas/inmunología , Grabado Dental/métodos , Materiales Dentales/química , Mediadores de Inflamación/inmunología , Interleucina-1/análisis , Interleucina-6/análisis , Lipopolisacáridos/inmunología , Factor Estimulante de Colonias de Macrófagos/análisis , Macrófagos/inmunología , Ratones , Osteoclastos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Propiedades de Superficie , Factores de Tiempo , Titanio/química , Factor de Necrosis Tumoral alfa/análisis
8.
J Funct Biomater ; 15(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057292

RESUMEN

To endow an implant surface with enhanced properties to ensure an appropriate seal with the host tissue for inflammation/infection resistance, next-generation bone implant collagen-polyphenol nanolayers were built on conventional titanium surfaces through a multilayer approach. X-ray Photoelectron Spectroscopy (XPS) analysis was performed to investigate the chemical arrangement of molecules within the surface layer and to provide an estimate of their thickness. A short-term (2 and 4 weeks) in vivo test of bone implants in a healthy rabbit model was performed to check possible side effects of the soft surface layer on early phases of osteointegration, leading to secondary stability. Results show the building up of the different nanolayers on top of titanium, resulting in a final composite collagen-polyphenol surface and a layer thickness of about 10 nm. In vivo tests performed on machined and state-of-the-art microrough titanium implants do not show significant differences between coated and uncoated samples, as the surface microroughness remains the main driver of bone-to-implant contact. These results confirm that the surface nanolayer does not interfere with the onset and progression of implant osteointegration and prompt the green light for specific investigations of the potential merits of this bioactive coating as an enhancer of the device/tissue seal.

9.
J Neurointerv Surg ; 15(12): 1207-1211, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36878688

RESUMEN

BACKGROUND: The first-pass complete recanalization by mechanical thrombectomy (MT) for the treatment of stroke remains limited due to the poor integration of the clot within current devices. Aspiration can help retrieval of the main clot but fails to prevent secondary embolism in the distal arterial territory. The dense meshes of extracellular DNA, recently described in stroke-related clots, might serve as an anchoring platform for MT devices. We aimed to evaluate the potential of a DNA-reacting surface to aid the retention of both the main clot and small fragments within the thrombectomy device to improve the potential of MT procedures. METHODS: Device-suitable alloy samples were coated with 15 different compounds and put in contact with extracellular DNA or with human peripheral whole blood, to compare their binding to DNA versus blood elements in vitro. Clinical-grade MT devices were coated with two selected compounds and evaluated in functional bench tests to study clot retrieval efficacy and quantify distal emboli using an M1 occlusion model. RESULTS: Binding properties of samples coated with all compounds were increased for DNA (≈3-fold) and decreased (≈5-fold) for blood elements, as compared with the bare alloy samples in vitro. Functional testing showed that surface modification with DNA-binding compounds improved clot retrieval and significantly reduced distal emboli during experimental MT of large vessel occlusion in a three-dimensional model. CONCLUSION: Our results suggest that clot retrieval devices coated with DNA-binding compounds can considerably improve the outcome of the MT procedures in stroke patients.


Asunto(s)
Accidente Cerebrovascular , Trombosis , Humanos , Resultado del Tratamiento , Trombectomía/métodos , Trombosis/terapia , Accidente Cerebrovascular/cirugía , Aleaciones , ADN
10.
Pharmaceutics ; 14(9)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145638

RESUMEN

An injectable delivery platform for promoting delayed bone healing has been developed by combining a thermosensitive polyurethane-based hydrogel with strontium-substituted mesoporous bioactive glasses (MBG_Sr) for the long-term and localized co-delivery of pro-osteogenic Sr2+ ions and an osteogenesis-enhancing molecule, N-Acetylcysteine (NAC). The incorporation of MBG_Sr microparticles, with a final concentration of 20 mg/mL, did not alter the overall properties of the thermosensitive hydrogel, in terms of sol-to-gel transition at a physiological-like temperature, gelation time, injectability and stability in aqueous environment at 37 °C. In particular, the hydrogel formulations (15% w/v polymer concentration) showed fast gelation in physiological conditions (1 mL underwent complete sol-to-gel transition within 3-5 min at 37 °C) and injectability in a wide range of temperatures (5-37 °C) through different needles (inner diameter in the range 0.4-1.6 mm). In addition, the MBG_Sr embedded into the hydrogel retained their full biocompatibility, and the released concentration of Sr2+ ions were effective in promoting the overexpression of pro-osteogenic genes from SAOS2 osteoblast-like cells. Finally, when incorporated into the hydrogel, the MBG_Sr loaded with NAC maintained their release properties, showing a sustained ion/drug co-delivery along 7 days, at variance with the MBG particles as such, showing a strong burst release in the first hours of soaking.

11.
J Funct Biomater ; 12(2)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063147

RESUMEN

Oral diseases and periodontitis in particular are a major health burden worldwide, because of their association with various systemic diseases and with conditions such as peri-implantitis. Attempts have been made over the years to reverse bone loss due to the host disproportionate inflammatory response and to prevent failure of dental implants. To this end, the use of biomaterials functionalized with molecules characterized by anti-inflammatory and antioxidant properties could represent a new frontier for regenerating functional periodontal tissues. In this study, a new ceramic granulated biomaterial, named Synergoss Red (SR), functionalized with a polyphenolic mixture extracted from pomace of the Croatina grape variety, is introduced. Following a preliminary in-depth characterization of the extract by HPLC analysis and of the biomaterial surface and composition, we performed evaluations of cytocompatibility and a biological response through in vitro assays. The anti-inflammatory and antioxidant properties of the identified phenolic molecules contained in SR were shown to downregulate inflammation in macrophages, to stimulate in osteoblast-like cells the expression of genes involved in deposition of the early bone matrix, and to mitigate bone remodeling by decreasing the RANKL/OPG ratio. Thanks to its cytocompatibility and assorted beneficial effects on bone regeneration, SR could be considered an innovative regenerative approach in periodontal therapy.

12.
Int J Mol Med ; 45(6): 1721-1734, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32236566

RESUMEN

Polyphenols are increasingly investigated for the treatment of periodontitis and research on their use in dental biomaterials is currently being conducted. Grape pomace extracts are a rich source of polyphenols. In the present study, the polyphenols of two different types of grape pomace were characterized and identified by high­performance liquid chromatography­diode array detector, and the effect of polyphenol­rich grape pomace extracts on mesenchymal stem cell (MSC) osteogenic differentiation was investigated. Solid­liquid extraction was used to recover polyphenols from red and white grape pomace. The two extracts have been characterized through the phenolic content and antioxidant power. Human MSCs (hMSCs) from the bone marrow were cultured both with and without given amounts (10 or 20 µg/ml) of the obtained pomace extracts. Their effects on cell differentiation were evaluated by reverse transcription­quantitative polymerase chain reaction, compared with relevant controls. Results showed that both pomace extracts, albeit different in phenolic composition and concentration, induced multiple effects on hMSC gene expression, such as a decreased receptor activator of nuclear factor κ­Β ligand/osteoprotegerin ratio and an enhanced expression of genes involved in osteoblast differentiation, thus suggesting a shift of hMSCs towards osteoblast differentiation. The obtained results provided data in favor of the exploitation of polyphenol properties from grape pomace extracts as complementary active molecules for dental materials and devices for bone regeneration in periodontal defects.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Vitis/química , Antioxidantes/farmacología , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Expresión Génica/efectos de los fármacos , Humanos , Fenoles/farmacología , Proantocianidinas/farmacología
13.
Materials (Basel) ; 13(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172215

RESUMEN

In the present study, the cytotoxicity and the antimicrobial activity of two silver citrate-based irrigant solutions were investigated. Cytotoxicity of various concentrations (0.25%, 0.5%, 1%, 2.5%, 5%) of both solutions (BioAKT and BioAKT Endo) was assessed on L-929 mouse fibroblasts using the MTT assay. For the quantitative analysis of components, an infrared (I.R.) spectroscopy was performed. The minimum inhibitory and minimal bactericidal concentrations (M.I.C. and M.B.C., respectively) were ascertained on Enterococcus faecalis strain ATCC 4083. For biofilm susceptibility after treatment with the irrigating agent, a minimum biofilm eradication concentration (M.B.E.C.) and confocal laser scanning microscope (C.L.S.M.) assays were performed. Quantification of E. faecalis cell biomass and percentage of live and dead cells in the biomass was appraised. Normality of data was analyzed using the D'Agostino & Pearson's test and the Shapiro-Wilk test. Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey's test. Both silver citrate solutions showed mouse fibroblasts viability >70% when diluted to 0.25% and 0.5%. Conversely, at higher concentrations, they were extremely cytotoxic. F.T.-IR spectroscopy measurements of both liquids showed the same spectra, indicating similar chemical characteristics. No substantial contrast in antimicrobial activity was observed among the two silver citrate solutions by using broth microdilution methods, biofilm susceptibility (MBEC-HTP device), and biomass screening using confocal laser scanning microscopy (C.L.S.M.) technique. Both solutions, used as root canal irrigants, exhibited significant antimicrobial activity and low cytocompatibility at dilutions greater than 0.5%.

14.
Mater Today Bio ; 5: 100041, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32211607

RESUMEN

Mesoporous bioactive glass nanoparticles (MBGNs) are emerging biomaterials for bone repair/regeneration, considering their favorable pro-osteogenic and proangiogenic activities. To further improve their therapeutic effects, the endowment of MBGNs with additional antioxidant properties is of particular interest to target oxidative stress related to bone remodeling and diseases. To this end, we developed antioxidant cerium-containing MBGNs (Ce-MBGNs) (particle size of 100-300 â€‹nm) by using a postimpregnation strategy to incorporate Ce, through which the shape, pore structure, and dispersity of the nanoparticles were preserved. The incorporated amount of Ce could be tailored by adjusting the concentration of the Ce precursor solution. When impregnated at a relatively low temperature (20 â€‹°C), Ce-MBGNs containing either 1.8 or 2.8 â€‹mol% of Ce were produced, while the formation of by-product cerium oxide nanoparticles (nanoceria) could be avoided. In both developed Ce-MBGNs, the concentration of Ce4+ was higher than that of Ce3+, while the relative molar percentage of Ce4+ was similar (∼74%) in both Ce-MBGNs. The obtained Ce-MBGNs were evidenced to be non-cytotoxic against fibroblasts at the concentration of 1 â€‹mg/mL. Moreover, the incorporation of Ce into MBGNs significantly reduced the expression of oxidative stress-related genes in macrophages (J774a.1). Particularly in the presence of pro-oxidation agents, Ce-MBGNs could downregulate the expression of oxidative stress-related genes in comparsion with the polystyrene plates (control). When cultured with Ce-MBGNs, the expression of proinflammatory-related genes in macrophages could also be downregulated in comparsion with MBGNs and the control. Ce-MBGNs also exhibited pro-osteogenic activities through suppressing pro-osteoclastogenic responses. The obtained results highlight the great potential of the developed Ce-MBGNs in a variety of biomedical applications, particularly in treating bone defects under inflammatory conditions, considering their antioxidant, anti-inflammatory, and pro-osteogenesis activities.

15.
Biochim Biophys Acta ; 1780(7-8): 995-1003, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18485917

RESUMEN

Improved biocompatibility and performance of biomedical devices can be achieved through the incorporation of bioactive molecules on device surfaces. Five structurally distinct pectic polysaccharides (modified hairy regions (MHRs)) were obtained by enzymatic liquefaction of apple (MHR-B, MHR-A and MHR-alpha), carrot (MHR-C) and potato (MHR-P) cells. Polystyrene (PS) Petri dishes, aminated by a plasma deposition process, were surface modified by the covalent linking of the MHRs. Results clearly demonstrate that MHR-B induces cell adhesion, proliferation and survival, in contrast to the other MHRs. Moreover, MHR-alpha causes cells to aggregate, decrease proliferation and enter into apoptosis. Cells cultured in standard conditions with 1% soluble MHR-B or MHR-alpha show the opposite behaviour to the one observed on MHR-B and -alpha-grafted PS. Fibronectin was similarly adsorbed onto MHR-B and tissue culture polystyrene (TCPS) control, but poorly on MHR-alpha. The Fn cell binding site (RGD sequence) was more accessible on MHR-B than on TCPS control, but poorly on MHR-alpha. The disintegrin echistatin inhibited fibroblast adhesion and spreading on MHR-B-grafted PS, which suggests that MHRs control fibroblast behaviour via serum-adhesive proteins. This study provides a basis for the design of intelligently-tailored biomaterial coatings able to induce specific cell functions.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Pectinas/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Daucus carota/química , Malus/química , Ratones , Pectinas/química , Solanum tuberosum/química , Células 3T3 Swiss , Técnicas de Cultivo de Tejidos
16.
Clin Oral Implants Res ; 20(3): 240-6, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19397635

RESUMEN

OBJECTIVE: The aim of this study was to evaluate the development of the osteoblastic phenotype in human alveolar bone-derived cells grown on collagen type I-coated titanium (Ti) surface (Col-Ti) obtained by plasma deposition acrylic acid grafting compared with machined Ti (M-Ti). MATERIAL AND METHODS: Osteoblastic cells were cultured until subconfluence and subcultured on Col-Ti and M-Ti for periods of up to 21 days. RESULTS: Cultures grown on Col-Ti and M-Ti exhibited similar cell morphology. Cell adhesion, total protein content, and alkaline phosphatase (ALP) activity were not affected by Ti surface modification in all evaluated periods. Growth analyses indicated that there were significantly more cells in cultures grown on Col-Ti at day 3. Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteoprotegerin (OPG) mRNA expression of cells subcultured on Col-Ti was higher, whereas collagen type I (COL) was lower compared with M-Ti. Ti surface modification neither affected the osteocalcin (OC), ALP and receptor activator of NF-kappaB ligand (RANKL) mRNA expression nor the calcium content extracted from mineralized matrix. CONCLUSIONS: These results demonstrated that Col-Ti favours cell growth during the proliferative phase (day 3) and osteoblastic differentiation, as demonstrated by changes in mRNA expression profile during the matrix mineralization phase (day 14), suggesting that this Ti surface modification may affect the processes of bone healing and remodelling.


Asunto(s)
Proceso Alveolar/citología , Calcificación Fisiológica/fisiología , Materiales Biocompatibles Revestidos/metabolismo , Colágeno Tipo I/metabolismo , Osteoblastos/citología , Proceso Alveolar/metabolismo , Matriz Ósea/metabolismo , Adhesión Celular/fisiología , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Proliferación Celular , Humanos , Oseointegración/fisiología , Osteoblastos/metabolismo , ARN Mensajero/análisis , Propiedades de Superficie , Titanio
17.
Materials (Basel) ; 12(16)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408942

RESUMEN

To achieve optimal performances, guided bone regeneration membranes should have several properties, in particular, proper stiffness and tear resistance for space maintenance, appropriate resorption time, and non-cytotoxic effect. In this work, polyphenol-rich pomace extract (PRPE), from a selected grape variety (Nebbiolo), rich in proanthocyanidins and flavonols (e.g., quercetin), was used as a rich source of polyphenols, natural collagen crosslinkers, to improve the physical properties of the porcine pericardium membrane. The incorporation of polyphenols in the collagen network of the membrane was clearly identified by infra-red spectroscopy through the presence of a specific peak between 1360-1380 cm-1. Polyphenols incorporated into the pericardium membrane bind to collagen with high affinity and reduce enzymatic degradation by 20% compared to the native pericardium. The release study shows a release of active molecules from the membrane, suggesting a possible use in patients affected by periodontitis, considering the role of polyphenols in the control of this pathology. Mechanical stiffness is increased making the membrane easier to handle. Young's modulus of pericardium treated with PRPE was three-fold higher than the one measured on native pericardium. Tear and suture retention strength measurement suggest favorable properties in the light of clinical practice requirements.

18.
Int J Nanomedicine ; 14: 10147-10164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32021158

RESUMEN

INTRODUCTION: Silver decorated mesoporous carbons are interesting systems that may offer effective solutions for advanced wound care products by combining the well-known anti-microbial activity of silver nanoparticles with the versatile properties of ordered mesoporous carbons. Silver is being used as a topical antimicrobial agent, especially in wound repair. However, while silver shows bactericidal properties, it is also cytotoxic at high concentrations. Therefore, the incorporation of silver into ordered mesoporous carbons allows to exploit both silver's biological effects and mesoporous carbons' biocompatibility and versatility with the purpose of conceiving silver-doped materials in light of the growing health concern in wound care. METHODS: The wound healing potential of an ordered mesoporous carbon also doped with two different loadings of silver nanoparticles (2 wt% and 10 wt%), was investigated through a biological assessment study based on different assays (cell viability, inflammation, antibacterial tests, macrophage-conditioned fibroblast and human keratinocyte cell cultures). RESULTS: The results show silver-doped ordered mesoporous carbons to positively condition cell viability, with a cell viability percentage >70% even for 10 wt% Ag, to modulate the expression of inflammatory cytokines and of genes involved in tissue repair (KRT6a, VEGFA, IVN) and remodeling (MMP9, TIMP3) in different cell systems. Furthermore, along with the biocompatibility and the bioactivity, the silver-doped ordered mesoporous carbons still retain an antibacterial effect, as shown by a maximum of 13.1% of inhibited area in the Halo test. The obtained results clearly showed that the silver-doped ordered mesoporous carbons exhibit both good biocompatibility and antibacterial effect with enhanced re-epithelialization, angiogenesis promotion and tissue regeneration. DISCUSSION: These findings suggest that the exceptional properties of silver-doped ordered mesoporous carbons could be exploited in the treatment of acute and chronic wounds and that such carbon materials could be potential candidates for use in medical devices for wound healing purposes, in particular, the 10 wt% loading, as the results showed to be the most effective.


Asunto(s)
Antibacterianos/farmacología , Carbono/química , Nanopartículas del Metal/química , Plata/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Carbono/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Enfermedad Crónica , Fibroblastos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Repitelización/efectos de los fármacos , Plata/química , Cicatrización de Heridas/fisiología
19.
Biomed Pharmacother ; 62(8): 526-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18771893

RESUMEN

CaO-SiO2 based ceramics have been regarded as potential candidates for artificial bone due to their excellent bone bioactivity and biocompatibility. However, they cannot be used as implants under a heavy load because of their poor mechanical properties, in particular low fracture toughness. Plasma spraying CaO-SiO2 based ceramic coatings onto titanium alloys can expand their application to the hard tissue replacement under a heavy load. Plasma sprayed wollastonite, dicalcium silicate and diopside coatings have excellent bone bioactivity and high bonding strength to titanium alloys. It is possible that these plasma sprayed CaO-SiO2 based ceramic coatings will be applied in clinic after they are widely and systematically researched.


Asunto(s)
Materiales Biocompatibles/química , Compuestos de Calcio/química , Cerámica/química , Silicatos/química , Dióxido de Silicio/química , Ácido Silícico/química , Titanio/química
20.
Clin Exp Dent Res ; 4(5): 196-205, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30455984

RESUMEN

The objectives of this study are to evaluate long-term wettability of novel surface-engineered, clinically available dental implants, featuring a surface nanolayer of covalently linked hyaluronan, and to confirm the relationships between wetting properties and surface nanostructure and microstructure. Wettability measurements were performed on clinically available hyaluronan-coated Grade 4 titanium implants, packaged and sterile, that is, in the "on the shelf" condition, after 1 year from production. Wetting properties were measured by the Wilhelmy plate method. Analysis of the surface structure and chemistry was perfomed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis, atomic force microscopy (AFM), and ζ-potential measurement, either on implants or disks or plates subjected to the same surface-engineering process. Results show that hydrophilicity and ensuing capillary rise of the hyaluronan-coated implant surface is unaffected by aging and dry storage. Chemical analysis of the implant surface by XPS and evaluation of the ζ potential indicate that hyaluronan chemistry and not that of titanium dictates interfacial properties. Comparison between XPS versus EDX and SEM versus AFM data confirm that the thickness of the hyaluronan surface layer is within the nanometer range. Data show that nanoengineering of the implant surface by linking of the hydrophilic hyaluronan molecule endows tested titanium implants by permanent wettability, without need of wet storage as presently performed to keep long-term hydrophilic implant surfaces. From an analytical point of view, the introduction in routine clinical practice of nanoengineered implant surfaces requires upgrading of analytical methods to the nanoscale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA