Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 76(6): 909-921.e3, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31676231

RESUMEN

Metabolic signaling to chromatin often underlies how adaptive transcriptional responses are controlled. While intermediary metabolites serve as co-factors for histone-modifying enzymes during metabolic flux, how these modifications contribute to transcriptional responses is poorly understood. Here, we utilize the highly synchronized yeast metabolic cycle (YMC) and find that fatty acid ß-oxidation genes are periodically expressed coincident with the ß-oxidation byproduct histone crotonylation. Specifically, we found that H3K9 crotonylation peaks when H3K9 acetylation declines and energy resources become limited. During this metabolic state, pro-growth gene expression is dampened; however, mutation of the Taf14 YEATS domain, a H3K9 crotonylation reader, results in de-repression of these genes. Conversely, exogenous addition of crotonic acid results in increased histone crotonylation, constitutive repression of pro-growth genes, and disrupted YMC oscillations. Together, our findings expose an unexpected link between metabolic flux and transcription and demonstrate that histone crotonylation and Taf14 participate in the repression of energy-demanding gene expression.


Asunto(s)
Acilcoenzima A/metabolismo , Metabolismo Energético , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Histonas/genética , Homeostasis , Lisina , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factor de Transcripción TFIID/genética , Transcripción Genética
2.
Mol Cell ; 69(4): 677-688.e9, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452642

RESUMEN

The yeast INO80 chromatin remodeling complex plays essential roles in regulating DNA damage repair, replication, and promoter architecture. INO80's role in these processes is likely related to its ability to slide nucleosomes, but the underlying mechanism is poorly understood. Here we use ensemble and single-molecule enzymology to study INO80-catalyzed nucleosome sliding. We find that the rate of nucleosome sliding by INO80 increases ∼100-fold when the flanking DNA length is increased from 40 to 60 bp. Furthermore, once sliding is initiated, INO80 moves the nucleosome rapidly at least 20 bp without pausing to re-assess flanking DNA length, and it can change the direction of nucleosome sliding without dissociation. Finally, we show that the Nhp10 module of INO80 plays an auto-inhibitory role, tuning INO80's switch-like response to flanking DNA. Our results indicate that INO80 is a highly processive remodeling motor that is tightly regulated by both substrate cues and non-catalytic subunits.


Asunto(s)
Ensamble y Desensamble de Cromatina , Replicación del ADN , ADN de Hongos/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Reparación del ADN , ADN de Hongos/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
3.
Genes Dev ; 29(17): 1795-800, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26341557

RESUMEN

The YEATS domain, found in a number of chromatin-associated proteins, has recently been shown to have the capacity to bind histone lysine acetylation. Here, we show that the YEATS domain of Taf14, a member of key transcriptional and chromatin-modifying complexes in yeast, is a selective reader of histone H3 Lys9 acetylation (H3K9ac). Structural analysis reveals that acetylated Lys9 is sandwiched in an aromatic cage formed by F62 and W81. Disruption of this binding in cells impairs gene transcription and the DNA damage response. Our findings establish a highly conserved acetyllysine reader function for the YEATS domain protein family and highlight the significance of this interaction for Taf14.


Asunto(s)
Reparación del ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Histonas/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/metabolismo , Acetilación , Daño del ADN , Histonas/química , Histonas/genética , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
4.
Eur Heart J ; 42(41): 4264-4276, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279605

RESUMEN

AIMS: Non-compaction cardiomyopathy is a devastating genetic disease caused by insufficient consolidation of ventricular wall muscle that can result in inadequate cardiac performance. Despite being the third most common cardiomyopathy, the mechanisms underlying the disease, including the cell types involved, are poorly understood. We have previously shown that endothelial cell-specific deletion of the chromatin remodeller gene Ino80 results in defective coronary vessel development that leads to ventricular non-compaction in embryonic mouse hearts. We aimed to identify candidate angiocrines expressed by endocardial and endothelial cells (ECs) in wildtype and LVNC conditions in Tie2Cre;Ino80fl/fltransgenic embryonic mouse hearts, and test the effect of these candidates on cardiomyocyte proliferation and maturation. METHODS AND RESULTS: We used single-cell RNA-sequencing to characterize endothelial and endocardial defects in Ino80-deficient hearts. We observed a pathological endocardial cell population in the non-compacted hearts and identified multiple dysregulated angiocrine factors that dramatically affected cardiomyocyte behaviour. We identified Col15a1 as a coronary vessel-secreted angiocrine factor, downregulated by Ino80-deficiency, that functioned to promote cardiomyocyte proliferation. Furthermore, mutant endocardial and endothelial cells up-regulated expression of secreted factors, such as Tgfbi, Igfbp3, Isg15, and Adm, which decreased cardiomyocyte proliferation and increased maturation. CONCLUSIONS: These findings support a model where coronary endothelial cells normally promote myocardial compaction through secreted factors, but that endocardial and endothelial cells can secrete factors that contribute to non-compaction under pathological conditions.


Asunto(s)
Células Endoteliales , Miocitos Cardíacos , Animales , Endocardio , Ventrículos Cardíacos , Ratones , Miocardio
5.
EMBO J ; 36(19): 2829-2843, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28814448

RESUMEN

The development of many sporadic cancers is directly initiated by carcinogen exposure. Carcinogens induce malignancies by creating DNA lesions (i.e., adducts) that can result in mutations if left unrepaired. Despite this knowledge, there has been remarkably little investigation into the regulation of susceptibility to acquire DNA lesions. In this study, we present the first quantitative human genome-wide map of DNA lesions induced by ultraviolet (UV) radiation, the ubiquitous carcinogen in sunlight that causes skin cancer. Remarkably, the pattern of carcinogen susceptibility across the genome of primary cells significantly reflects mutation frequency in malignant melanoma. Surprisingly, DNase-accessible euchromatin is protected from UV, while lamina-associated heterochromatin at the nuclear periphery is vulnerable. Many cancer driver genes have an intrinsic increase in carcinogen susceptibility, including the BRAF oncogene that has the highest mutation frequency in melanoma. These findings provide a genome-wide snapshot of DNA injuries at the earliest stage of carcinogenesis. Furthermore, they identify carcinogen susceptibility as an origin of genome instability that is regulated by nuclear architecture and mirrors mutagenesis in cancer.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica , Resistencia a Medicamentos/genética , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Mutagénesis , Secuencia de Bases/fisiología , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Células Cultivadas , Daño del ADN , Resistencia a Medicamentos/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Humanos , Melanoma/etiología , Melanoma/genética , Mutagénesis/efectos de los fármacos , Mutagénesis/genética , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Rayos Ultravioleta , Melanoma Cutáneo Maligno
6.
Nat Rev Mol Cell Biol ; 10(6): 373-84, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19424290

RESUMEN

Chromatin-modifying factors have essential roles in DNA processing pathways that dictate cellular functions. The ability of chromatin modifiers, including the INO80 and SWR1 chromatin-remodelling complexes, to regulate transcriptional processes is well established. However, recent studies reveal that the INO80 and SWR1 complexes have crucial functions in many other essential processes, including DNA repair, checkpoint regulation, DNA replication, telomere maintenance and chromosome segregation. During these diverse nuclear processes, the INO80 and SWR1 complexes function cooperatively with their histone substrates, gamma-H2AX and H2AZ. This research reveals that INO80 and SWR1 ATP-dependent chromatin remodelling is an integral component of pathways that maintain genomic integrity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Cromatina/metabolismo , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Histonas/clasificación , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Transcripción Genética
7.
PLoS Genet ; 14(2): e1007216, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462149

RESUMEN

Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis. In particular, mitochondrial maintenance is disrupted in ies6 mutants. INO80 is also needed to communicate TORC1-mediated signaling to chromatin, as ino80 mutants exhibit defective transcriptional profiles and altered histone acetylation of TORC1-responsive genes. Furthermore, comparative analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is a central component of metabolic homeostasis that influences histone acetylation and may contribute to disease when disrupted.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Acetilación , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica/genética , Homeostasis/genética , Redes y Vías Metabólicas/genética , Organismos Modificados Genéticamente , Procesamiento Proteico-Postraduccional/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 290(42): 25700-9, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26306040

RESUMEN

ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química
9.
Nat Cell Biol ; 7(2): 126-36, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15654331

RESUMEN

Transcriptional induction of cell-cycle regulatory proteins ensures proper timing of subsequent cell-cycle events. Here we show that the Forkhead transcription factor FoxM1 regulates expression of many G2-specific genes and is essential for chromosome stability. Loss of FoxM1 leads to pleiotropic cell-cycle defects, including a delay in G2, chromosome mis-segregation and frequent failure of cytokinesis. We show that transcriptional activation of cyclin B by FoxM1 is essential for timely mitotic entry, whereas CENP-F, another direct target of FoxM1 identified here, is essential for precise functioning of the mitotic spindle checkpoint. Thus, our data uncover a transcriptional cluster regulated by FoxM1 that is essential for proper mitotic progression.


Asunto(s)
Inestabilidad Cromosómica , Mitosis , Factores de Transcripción/fisiología , Animales , Ciclo Celular , Proteínas Cromosómicas no Histona/fisiología , Segregación Cromosómica , Ciclina B/metabolismo , Ciclina B1 , Proteínas de Unión al ADN/fisiología , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas de Microfilamentos
10.
FEBS J ; 289(5): 1302-1314, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34036737

RESUMEN

Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress toward understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will be summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.


Asunto(s)
Carcinogénesis/genética , Epigénesis Genética , Histonas/genética , Neoplasias/genética , Transcripción Genética , Células Tumorales Cultivadas/metabolismo , Antineoplásicos/uso terapéutico , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular/efectos de los fármacos , Cromatina/química , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Terapia Molecular Dirigida/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas/efectos de los fármacos , Células Tumorales Cultivadas/patología
11.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983823

RESUMEN

Carcinogenic insult, such as UV light exposure, creates DNA lesions that evolve into mutations if left unrepaired. These resulting mutations can contribute to carcinogenesis and drive malignant phenotypes. Susceptibility to carcinogens (i.e., the propensity to form a carcinogen-induced DNA lesion) is regulated by both genetic and epigenetic factors. Importantly, carcinogen susceptibility is a critical contributor to cancer mutagenesis. It is known that mutations can be prevented by tumor suppressor regulation of DNA damage response pathways; however, their roles carcinogen susceptibility have not yet been reported. In this study, we reveal that the retinoblastoma (RB1) tumor suppressor regulates UV susceptibility across broad regions of the genome. In particular, centromere and telomere-proximal regions exhibit significant increases in UV lesion susceptibility when RB1 is deleted. Several cancer-related genes are located within genomic regions of increased susceptibility, including telomerase reverse transcriptase, TERT, thereby accelerating mutagenic potential in cancers with RB1 pathway alterations. These findings reveal novel genome stability mechanisms of a tumor suppressor and uncover new pathways to accumulate mutations during cancer evolution.


Asunto(s)
Carcinogénesis , Carcinógenos/farmacología , Neoplasias , Proteínas de Unión a Retinoblastoma/genética , Ubiquitina-Proteína Ligasas/genética , Sistemas CRISPR-Cas , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Línea Celular , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad/genética , Humanos , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Oncogenes/genética
12.
Mutat Res ; 823: 111758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34333390

RESUMEN

Exposure to the ultraviolet (UV) radiation in sunlight creates DNA lesions, which if left unrepaired can induce mutations and contribute to skin cancer. The two most common UV-induced DNA lesions are the cis-syn cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), both of which can initiate mutations. Interestingly, mutation frequency across the genomes of many cancers is heterogenous with significant increases in heterochromatin. Corresponding increases in UV lesion susceptibility and decreases in repair are observed in heterochromatin versus euchromatin. However, the individual contributions of CPDs and 6-4PPs to mutagenesis have not been systematically examined in specific genomic and epigenomic contexts. In this study, we compared genome-wide maps of 6-4PP and CPD lesion abundances in primary cells and conducted comprehensive analyses to determine the genetic and epigenetic features associated with susceptibility. Overall, we found a high degree of similarity between 6-4PP and CPD formation, with an enrichment of both in heterochromatin regions. However, when examining the relative levels of the two UV lesions, we found that bivalent and Polycomb-repressed chromatin states were uniquely more susceptible to 6-4PPs. Interestingly, when comparing UV susceptibility and repair with melanoma mutation frequency in these regions, disparate patterns were observed in that susceptibility was not always inversely associated with repair and mutation frequency. Functional enrichment analysis hint at mechanisms of negative selection for these regions that are essential for cell viability, immune function and induce cell death when mutated. Ultimately, these results reveal both the similarities and differences between UV-induced lesions that contribute to melanoma.


Asunto(s)
Reparación del ADN , Epigénesis Genética/efectos de la radiación , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos , Daño del ADN , Bases de Datos Genéticas , Eucromatina/química , Eucromatina/metabolismo , Eucromatina/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Genoma Humano/efectos de la radiación , Heterocromatina/química , Heterocromatina/metabolismo , Heterocromatina/efectos de la radiación , Histonas/genética , Histonas/metabolismo , Humanos , Melanoma/etiología , Melanoma/metabolismo , Melanoma/patología , Mutagénesis , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Cultivo Primario de Células , Dímeros de Pirimidina/agonistas , Dímeros de Pirimidina/metabolismo , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
13.
Mol Cell Biol ; 27(16): 5639-49, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17562861

RESUMEN

ATP-dependent chromatin remodeling complexes have been implicated in the regulation of transcription, replication, and more recently DNA double-strand break repair. Here we report that the Ies3p subunit of the Saccharomyces cerevisiae INO80 chromatin remodeling complex interacts with a conserved tetratricopeptide repeat domain of the telomerase protein Est1p. Deletion of IES3 and some other subunits of the complex induced telomere elongation and altered telomere position effect. In telomerase-negative mutants, loss of Ies3p delayed the emergence of recombinational survivors and stimulated the formation of extrachromosomal telomeric circles in survivors. Deletion of IES3 also resulted in heightened levels of telomere-telomere fusions in telomerase-deficient strains. In addition, a delay in survivor formation was observed in an Arp8p-deficient mutant. Because Arp8p is required for the chromatin remodeling activity of the INO80 complex, the complex may promote recombinational telomere maintenance by altering chromatin structure. Consistent with this notion, we observed preferential localization of multiple subunits of the INO80 complex to telomeres. Our results reveal novel functions for a subunit of the telomerase complex and the INO80 chromatin remodeling complex.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Proteínas de Microfilamentos/metabolismo , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Telomerasa/química , Telomerasa/metabolismo
14.
Mol Metab ; 38: 100973, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32251664

RESUMEN

BACKGROUND: ATP-dependent chromatin remodelers are evolutionarily conserved complexes that alter nucleosome positioning to influence many DNA-templated processes, such as replication, repair, and transcription. In particular, chromatin remodeling can dynamically regulate gene expression by altering accessibility of chromatin to transcription factors. SCOPE OF REVIEW: This review provides an overview of the importance of chromatin remodelers in the regulation of metabolic gene expression. Particular emphasis is placed on the INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers in both yeast and mammals. This review details discoveries from the initial identification of chromatin remodelers in Saccharomyces cerevisiae to recent discoveries in the metabolic requirements of developing embryonic tissues in mammals. MAJOR CONCLUSIONS: INO80 and SWI/SNF (BAF/PBAF) chromatin remodelers regulate the expression of energy metabolism pathways in S. cerevisiae and mammals in response to diverse nutrient environments. In particular, the INO80 complex organizes the temporal expression of gene expression in the metabolically synchronized S. cerevisiae system. INO80-mediated chromatin remodeling is also needed to constrain cell division during metabolically favorable conditions. Conversely, the BAF/PBAF remodeler regulates tissue-specific glycolytic metabolism and is disrupted in cancers that are dependent on glycolysis for proliferation. The role of chromatin remodeling in metabolic gene expression is downstream of the metabolic signaling pathways, such as the TOR pathway, a critical regulator of metabolic homeostasis. Furthermore, the INO80 and BAF/PBAF chromatin remodelers have both been shown to regulate heart development, the tissues of which have unique requirements for energy metabolism during development. Collectively, these results demonstrate that chromatin remodelers communicate metabolic status to chromatin and are a central component of homeostasis pathways that optimize cell fitness, organismal development, and prevent disease.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica/genética , Redes y Vías Metabólicas/genética , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Unión al ADN , Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Redes y Vías Metabólicas/fisiología , Metabolismo/genética , Metabolismo/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Activación Transcripcional/fisiología
15.
Nat Genet ; 52(11): 1178-1188, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33020667

RESUMEN

Somatic mutations in driver genes may ultimately lead to the development of cancer. Understanding how somatic mutations accumulate in cancer genomes and the underlying factors that generate somatic mutations is therefore crucial for developing novel therapeutic strategies. To understand the interplay between spatial genome organization and specific mutational processes, we studied 3,000 tumor-normal-pair whole-genome datasets from 42 different human cancer types. Our analyses reveal that the change in somatic mutational load in cancer genomes is co-localized with topologically-associating-domain boundaries. Domain boundaries constitute a better proxy to track mutational load change than replication timing measurements. We show that different mutational processes lead to distinct somatic mutation distributions where certain processes generate mutations in active domains, and others generate mutations in inactive domains. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation-rate variations observed in human cancers.


Asunto(s)
Cromatina/química , Genoma Humano , Mutación , Neoplasias/genética , Línea Celular Tumoral , Cromosomas Humanos X/genética , Reparación de la Incompatibilidad de ADN , Análisis Mutacional de ADN , ADN de Neoplasias , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Inactivación del Cromosoma X
16.
Genome Biol ; 20(1): 298, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874648

RESUMEN

BACKGROUND: Somatic mutations in healthy tissues contribute to aging, neurodegeneration, and cancer initiation, yet they remain largely uncharacterized. RESULTS: To gain a better understanding of the genome-wide distribution and functional impact of somatic mutations, we leverage the genomic information contained in the transcriptome to uniformly call somatic mutations from over 7500 tissue samples, representing 36 distinct tissues. This catalog, containing over 280,000 mutations, reveals a wide diversity of tissue-specific mutation profiles associated with gene expression levels and chromatin states. For example, lung samples with low expression of the mismatch-repair gene MLH1 show a mutation signature of deficient mismatch repair. In addition, we find pervasive negative selection acting on missense and nonsense mutations, except for mutations previously observed in cancer samples, which are under positive selection and are highly enriched in many healthy tissues. CONCLUSIONS: These findings reveal fundamental patterns of tissue-specific somatic evolution and shed light on aging and the earliest stages of tumorigenesis.


Asunto(s)
Mutación , Factores de Edad , Envejecimiento/genética , Humanos , Neoplasias/genética , Selección Genética , Factores Sexuales
17.
Cell Rep ; 22(3): 611-623, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29346761

RESUMEN

Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC). Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.


Asunto(s)
División Celular/genética , Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , ADN Helicasas/genética , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Unión al ADN , Homeostasis
18.
Nat Commun ; 9(1): 368, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29371594

RESUMEN

During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Endotelio Vascular/metabolismo , Cardiopatías Congénitas/metabolismo , Neovascularización Patológica/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Animales , Vasos Coronarios/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN , Endocardio/metabolismo , Endocardio/patología , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Endotelio Vascular/patología , Cardiopatías Congénitas/genética , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Ratones Noqueados , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , Neovascularización Patológica/genética
19.
Mol Cell Biol ; 22(3): 856-65, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11784861

RESUMEN

The retinoblastoma protein, pRb, controls transcription through recruitment of histone deacetylase to particular E2F-responsive genes. We determined the acetylation level of individual nucleosomes present in the cyclin E promoter of RB(+/+) and RB(-/-) mouse embryo fibroblasts. We also determined the effects of pRb on nucleosomal conformation by examining the thiol reactivity of histone H3 of individual nucleosomes. We found that pRb represses the cyclin E promoter through histone deacetylation of a single nucleosome, to which it and histone deacetylase 1 bind. In addition, the conformation of this nucleosome is modulated by pRb-directed histone deacetylase activity. Thus, the repressive role of pRb in cyclin E transcription and therefore cell cycle progression can be mapped to its control of the acetylation status and conformation of a single nucleosome.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Proteína de Retinoblastoma/metabolismo , Acetilación , Animales , Células Cultivadas , Mapeo Cromosómico , Ciclina E/genética , Histona Desacetilasas/metabolismo , Histonas/química , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína de Retinoblastoma/deficiencia , Proteína de Retinoblastoma/genética , Transcripción Genética
20.
Philos Trans R Soc Lond B Biol Sci ; 372(1731)2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28847826

RESUMEN

Chromatin modification is conserved in all eukaryotes and is required to facilitate and regulate DNA-templated processes. For example, chromatin manipulation, such as histone post-translational modification and nucleosome positioning, play critical roles in genome stability pathways. The INO80 chromatin-remodelling complex, which regulates the abundance and positioning of nucleosomes, is particularly important for proper execution of inducible responses to DNA damage. This review discusses the participation and activity of the INO80 complex in DNA repair and cell cycle checkpoint pathways, with emphasis on the Saccharomyces cerevisiae model system. Furthermore, the role of ATM/ATR kinases, central regulators of DNA damage signalling, in the regulation of INO80 function will be reviewed. In addition, emerging themes of chromatin remodelling in mitotic stability pathways and chromosome segregation will be introduced. These studies are critical to understanding the dynamic chromatin landscape that is rapidly and reversibly modified to maintain the integrity of the genome.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Puntos de Control del Ciclo Celular , ADN Helicasas/genética , Reparación del ADN , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA