Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R938-R950, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704845

RESUMEN

Systemic administration of dopamine (DA) receptor agonists leads to falls in body temperature. However, the central thermoregulatory pathways modulated by DA have not been fully elucidated. Here we identified a source and site of action contributing to DA's hypothermic action by inhibition of brown adipose tissue (BAT) thermogenesis. Nanoinjection of the type 2 and type 3 DA receptor (D2R/D3R) agonist, 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), in the rostral raphe pallidus area (rRPa) inhibits the sympathetic activation of BAT evoked by cold exposure or by direct activation of N-methyl-d-aspartate (NMDA) receptors in the rRPa. Blockade of D2R/D3R in the rRPa with nanoinjection of SB-277011A increases BAT thermogenesis, consistent with a tonic release of DA in the rRPa contributing to inhibition of BAT thermogenesis. Accordingly, D2Rs are expressed in cold-activated and serotonergic neurons in the rRPa, and anatomical tracing studies revealed that neurons in the posterior hypothalamus (PH) are a source of dopaminergic input to the rRPa. Disinhibitory activation of PH neurons with nanoinjection of gabazine inhibits BAT thermogenesis, which is reduced by pretreatment of the rRPa with SB-277011A. In conclusion, the rRPa, the site of sympathetic premotor neurons for BAT, receives a tonically active, dopaminergic input from the PH that suppresses BAT thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/inervación , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hipotálamo Posterior/metabolismo , Inhibición Neural , Núcleo Pálido del Rafe/metabolismo , Termogénesis , Animales , Agonistas de Dopamina/administración & dosificación , Neuronas Dopaminérgicas/efectos de los fármacos , Antagonistas del GABA/administración & dosificación , Hipotálamo Posterior/efectos de los fármacos , Inyecciones , Masculino , Vías Nerviosas/metabolismo , Núcleo Pálido del Rafe/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Termogénesis/efectos de los fármacos
2.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R609-R618, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897823

RESUMEN

Modest cold exposures are likely to activate autonomic thermogenic mechanisms due to activation of cutaneous thermal afferents, whereas central thermosensitive neurons set the background tone on which this afferent input is effective. In addition, more prolonged or severe cold exposures that overwhelm cold defense mechanisms would directly activate thermosensitive neurons within the central nervous system. Here, we examined the involvement of the canonical brown adipose tissue (BAT) sympathoexcitatory efferent pathway in the response to direct local cooling of the preoptic area (POA) in urethane-chloralose-anesthetized rats. With skin temperature and core body temperature maintained between 36 and 39°C, cooling POA temperature by ~1-4°C evoked increases in BAT sympathetic nerve activity (SNA), BAT temperature, expired CO2, and heart rate. POA cooling-evoked responses were inhibited by nanoinjections of ionotropic glutamate receptor antagonists or the GABAA receptor agonist muscimol into the median POA or by nanoinjections of ionotropic glutamate receptor antagonists into the dorsomedial hypothalamic nucleus (bilaterally) or into the raphe pallidus nucleus. These results demonstrate that direct cooling of the POA can increase BAT SNA and thermogenesis via the canonical BAT sympathoexcitatory efferent pathway, even in the face of warm thermal input from the skin and body core.


Asunto(s)
Tejido Adiposo Pardo/inervación , Hipotermia Inducida , Área Preóptica/fisiología , Sistema Nervioso Simpático/fisiología , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Dióxido de Carbono/metabolismo , Metabolismo Energético , Frecuencia Cardíaca , Masculino , Ratas Sprague-Dawley , Receptores de Glutamato/metabolismo , Respiración , Temperatura Cutánea , Factores de Tiempo
3.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R134-R143, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29590555

RESUMEN

The sympathetic nerve activity (SNA) to brown adipose tissue (BAT) regulates BAT thermogenesis to defend body temperature in cold environments or to produce fever during immune responses. The vagus nerve contains afferents that inhibit the BAT SNA and BAT thermogenesis evoked by skin cooling. We sought to determine whether activation of transient receptor potential vanilloid 1 (TRPV1) channels in the nucleus tractus solitarius (NTS), which are prominently expressed in unmyelinated vagal afferents, would affect cold-evoked BAT thermogenesis, cardiovascular parameters, or their vagal afferent-evoked responses. In urethane-chloralose-anesthetized rats, during skin cooling, nanoinjection of the TRPV1-agonist resiniferatoxin in NTS decreased BAT SNA (from 695 ± 195% of baseline during cooling to 103 ± 8% of baseline after resiniferatoxin), BAT temperature (-0.8 ± 0.1°C), expired CO2 (-0.3 ± 0.04%), mean arterial pressure (MAP; -20 ± 5 mmHg), and heart rate (-44 ± 11 beats/min). Pretreatment of NTS with the TRPV1 antagonist capsazepine prevented these resiniferatoxin-mediated effects. Intravenous injection of the TRPV1 agonist dihydrocapsaicin also decreased all the measured variables (except MAP). Bilateral cervical or subdiaphragmatic vagotomy attenuated the decreases in BAT SNA and thermogenesis evoked by nanoinjection of resiniferatoxin in NTS but did not prevent the decreases in BAT SNA and BAT thermogenesis evoked by intravenous dihydrocapsaicin. We conclude that activation of TRPV1 channels in the NTS of vagus nerve intact rats inhibits BAT SNA and decreases BAT metabolism, blood pressure, and heart rate. In contrast, the inhibition of BAT thermogenesis following systemic administration of dihydrocapsaicin does not require vagal afferent activity, consistent with a nonvagal pathway through which systemic TRPV1 agonists can inhibit BAT thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/inervación , Presión Arterial/efectos de los fármacos , Capsaicina/análogos & derivados , Sistema Cardiovascular/inervación , Diterpenos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Canales Catiónicos TRPV/agonistas , Termogénesis/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Animales , Capsaicina/farmacología , Masculino , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Núcleo Solitario/metabolismo , Canales Catiónicos TRPV/metabolismo , Nervio Vago/fisiología
4.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R708-R720, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29847161

RESUMEN

Endogenous intestinal glucagon-like peptide-1 (GLP-1) controls satiation and glucose metabolism via vagal afferent neurons (VANs). Recently, VANs have received increasing attention for their role in brown adipose tissue (BAT) thermogenesis. It is, however, unclear whether VAN GLP-1 receptor (GLP-1R) signaling affects BAT thermogenesis and energy expenditure (EE) and whether this VAN mechanism contributes to energy balance. First, we tested the effect of the GLP-1R agonist exendin-4 (Ex4, 0.3 µg/kg ip) on EE and BAT thermogenesis and whether these effects require VAN GLP-1R signaling using a rat model with a selective Glp1r knockdown (kd) in VANs. Second, we examined the role of VAN GLP-1R in energy balance during chronic high-fat diet (HFD) feeding in VAN Glp1r kd rats. Finally, we used viral transsynaptic tracers to identify the possible neuronal substrates of such a gut-BAT interaction. VAN Glp1r kd attenuated the acute suppressive effects of Ex4 on EE and BAT thermogenesis. Consistent with this finding, the VAN Glp1r kd increased EE and BAT activity, diminished body weight gain, and improved insulin sensitivity compared with HFD-fed controls. Anterograde transsynaptic viral tracing of VANs infected major hypothalamic and hindbrain areas involved in BAT sympathetic regulation. Moreover, retrograde tracing from BAT combined with laser capture microdissection revealed that a population of VANs expressing Glp1r is synaptically connected to the BAT. Our findings reveal a novel role of VAN GLP-1R signaling in the regulation of EE and BAT thermogenesis and imply that through this gut-brain-BAT connection, intestinal GLP-1 plays a role in HFD-induced metabolic syndrome.


Asunto(s)
Tejido Adiposo Pardo/inervación , Sistema Nervioso Autónomo/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Intestinos/inervación , Termogénesis , Animales , Sistema Nervioso Autónomo/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Exenatida/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/genética , Incretinas/farmacología , Masculino , Vías Nerviosas/metabolismo , Neuronas Aferentes/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Termogénesis/efectos de los fármacos
5.
J Physiol ; 595(24): 7495-7508, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29023733

RESUMEN

KEY POINTS: A tonically active, muscarinic cholinergic inhibition of rostral raphe pallidus (rRPa) neurons influences thermogenesis of brown adipose tissue (BAT) independent of ambient temperature conditions. The tonically active cholinergic input to rRPa originates caudal to the hypothalamus. Muscarinic acetylcholine receptor (mAChR) activation in rRPa contributes to the inhibition of BAT sympathetic nerve activity (SNA) evoked by activation of neurons in the rostral ventrolateral medulla (RVLM). The RVLM is not the sole source of the muscarinic cholinergic input to rRPa. Activation of GABA receptors in rRPa does not mediate the cholinergic inhibition of BAT SNA. ABSTRACT: We sought to determine if body temperature and energy expenditure are influenced by a cholinergic input to neurons in the rostral raphe pallidus (rRPa), the site of sympathetic premotor neurons controlling thermogenesis of brown adipose tissue (BAT). Nanoinjections of the muscarinic acetylcholine receptor (mAChR) agonist, oxotremorine, or the cholinesterase inhibitor, neostigmine (NEOS), in the rRPa of anaesthetized rats decreased cold-evoked BAT sympathetic nerve activity (SNA, nadirs: -72 and -95%), BAT temperature (Tbat, -0.5 and -0.6°C), expired CO2 (Exp. CO2 , -0.3 and -0.5%) and heart rate (HR, -22 and -41 bpm). NEOS into rRPa reversed the increase in BAT SNA evoked by blockade of GABA receptors in rRPa. Nanoinjections of the mAChR antagonist, scopolamine (SCOP), in the rRPa of warm rats increased BAT SNA (peak: +1087%), Tbat (+1.8°C), Exp. CO2 (+0.7%), core temperature (Tcore, +0.5°C) and HR (+54 bpm). SCOP nanoinjections in rRPa produced similar activations of BAT during cold exposure, following a brain transection caudal to the hypothalamus, and during the blockade of glutamate receptors in rRPa. We conclude that a tonically active cholinergic input to the rRPa inhibits BAT SNA via activation of local mAChR. The inhibition of BAT SNA mediated by mAChR in rRPa does not depend on activation of GABA receptors in rRPa. The increase in BAT SNA following mAChR blockade in rRPa does not depend on the activity of neurons in the hypothalamus or on glutamate receptor activation in rRPa.


Asunto(s)
Tejido Adiposo Pardo/inervación , Inhibición Neural , Núcleo Pálido del Rafe/fisiología , Receptores Muscarínicos/metabolismo , Sistema Nervioso Simpático/fisiología , Tejido Adiposo Pardo/fisiología , Animales , Inhibidores de la Colinesterasa/farmacología , Masculino , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Neostigmina/farmacología , Oxotremorina/farmacología , Ratas , Ratas Sprague-Dawley , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 312(5): R779-R786, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28330964

RESUMEN

To maintain core body temperature in mammals, the normal central nervous system (CNS) thermoregulatory reflex networks produce an increase in brown adipose tissue (BAT) thermogenesis in response to skin cooling and an inhibition of the sympathetic outflow to BAT during skin rewarming. In contrast, these normal thermoregulatory reflexes appear to be inverted in hibernation/torpor; thermogenesis is inhibited during exposure to a cold environment, allowing dramatic reductions in core temperature and metabolism, and thermogenesis is activated during skin rewarming, contributing to a return of normal body temperature. Here, we describe two unrelated experimental paradigms in which rats, a nonhibernating/torpid species, exhibit a "thermoregulatory inversion," which is characterized by an inhibition of BAT thermogenesis in response to skin cooling, and a switch in the gain of the skin cooling reflex transfer function from negative to positive values. Either transection of the neuraxis immediately rostral to the dorsomedial hypothalamus in anesthetized rats or activation of A1 adenosine receptors within the CNS of free-behaving rats produces a state of thermoregulatory inversion in which skin cooling inhibits BAT thermogenesis, leading to hypothermia, and skin warming activates BAT, supporting an increase in core temperature. These results reflect the existence of a novel neural circuit that mediates inverted thermoregulatory reflexes and suggests a pharmacological mechanism through which a deeply hypothermic state can be achieved in nonhibernating/torpid mammals, possibly including humans.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Regulación de la Temperatura Corporal/fisiología , Núcleo Hipotalámico Dorsomedial/fisiología , Retroalimentación Fisiológica/fisiología , Receptor de Adenosina A1/metabolismo , Fenómenos Fisiológicos de la Piel , Animales , Masculino , Ratas , Ratas Wistar , Recalentamiento/métodos , Piel/inervación , Sistema Nervioso Simpático/fisiología
7.
Am J Physiol Regul Integr Comp Physiol ; 312(6): R919-R926, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28254751

RESUMEN

The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycineA receptors (GlyAR) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the GlyAR antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (TBAT, +1.1°C), expired CO2, (+0.4%), core body temperature (TCORE, +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), TBAT (-0.2°C), TCORE (-0.2°C), expired CO2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), TBAT (-0.5°C), expired CO2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure.


Asunto(s)
Tejido Adiposo Pardo/inervación , Sistema Cardiovascular/inervación , Glicina/metabolismo , Núcleos del Rafe Mesencefálico/metabolismo , Neuronas Motoras/metabolismo , Inhibición Neural , Receptores de Glicina/metabolismo , Sistema Nervioso Simpático/metabolismo , Termogénesis , Potenciales de Acción , Animales , Presión Arterial , Glicinérgicos/administración & dosificación , Frecuencia Cardíaca , Inyecciones , Masculino , Núcleos del Rafe Mesencefálico/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Glicina/antagonistas & inhibidores , Sistema Nervioso Simpático/efectos de los fármacos , Termogénesis/efectos de los fármacos , Factores de Tiempo
8.
Am J Physiol Endocrinol Metab ; 311(2): E287-92, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27354235

RESUMEN

In dramatic contrast to rats on a control diet, rats maintained on a high-fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed the HFD-induced inhibition of cold-evoked BAT activity. Thus, a HFD does not prevent rats from mounting a robust, centrally driven BAT thermogenesis; however, a HFD does alter a vagal afferent input to NTS neurons, thereby preventing the normal activation of BAT thermogenesis to cooling. These results, paralleling the absence of cooling-evoked glucose uptake in the BAT of obese humans, reveal a neural mechanism through which consumption of a HFD contributes to reduced energy expenditure and thus to weight gain.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Frío , Dieta Alta en Grasa , Neuronas/metabolismo , Núcleo Pálido del Rafe/metabolismo , Obesidad/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/fisiopatología , Vías Aferentes , Animales , Metabolismo Energético , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Núcleo Pálido del Rafe/fisiopatología , Obesidad/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato , Núcleo Solitario/citología , Sistema Nervioso Simpático/fisiopatología , Termogénesis , Vagotomía , Nervio Vago , Aumento de Peso
9.
Artículo en Inglés | MEDLINE | ID: mdl-27333659

RESUMEN

The positive outcome that hypothermia contributes to brain and cardiac protection following ischemia has stimulated research in the development of pharmacological approaches to induce a hypothermic/hypometabolic state. Pharmacological manipulation of central autonomic thermoregulatory circuits could represent a potential target for the induction of a hypothermic state. Here we present a brief description of the CNS thermoregulatory centers and how the manipulation of these circuits can be useful in the treatment of pathological conditions such as stroke or brain hemorrhage.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Homeostasis , Hipotermia Inducida , Receptor de Adenosina A1/fisiología , Animales , Humanos , Receptor de Adenosina A1/metabolismo , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Hemorragia Subaracnoidea/fisiopatología , Hemorragia Subaracnoidea/terapia
10.
Pharmacol Rev ; 64(2): 359-88, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22407614

RESUMEN

5-Hydroxytryptamine (5-HT; serotonin) was discovered more than 60 years ago as a substance isolated from blood. The neural effects of 5-HT have been well investigated and understood, thanks in part to the pharmacological tools available to dissect the serotonergic system and the development of the frequently prescribed selective serotonin-reuptake inhibitors. By contrast, our understanding of the role of 5-HT in the control and modification of blood pressure pales in comparison. Here we focus on the role of 5-HT in systemic blood pressure control. This review provides an in-depth study of the function and pharmacology of 5-HT in those tissues that can modify blood pressure (blood, vasculature, heart, adrenal gland, kidney, brain), with a focus on the autonomic nervous system that includes mechanisms of action and pharmacology of 5-HT within each system. We compare the change in blood pressure produced in different species by short- and long-term administration of 5-HT or selective serotonin receptor agonists. To further our understanding of the mechanisms through which 5-HT modifies blood pressure, we also describe the blood pressure effects of commonly used drugs that modify the actions of 5-HT. The pharmacology and physiological actions of 5-HT in modifying blood pressure are important, given its involvement in circulatory shock, orthostatic hypotension, serotonin syndrome and hypertension.


Asunto(s)
Presión Sanguínea/fisiología , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animales , Humanos , Hipertensión/fisiopatología , Hipotensión Ortostática/fisiopatología , Receptores de Serotonina/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Síndrome de la Serotonina/fisiopatología , Choque/fisiopatología , Especificidad de la Especie
11.
J Neurosci ; 33(5): 2017-28, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23365239

RESUMEN

α2 adrenergic receptor (α2-AR) agonists have been used as antihypertensive agents, in the management of drug withdrawal, and as sedative analgesics. Since α2-AR agonists also influence the regulation of body temperature, we explored their potential as antipyretic agents. This study delineates the central neural substrate for the inhibition of rat brown adipose tissue (BAT) and shivering thermogenesis by α2-AR agonists. Nanoinjection of the α2-AR agonist clonidine (1.2 nmol) into the rostral raphe pallidus area (rRPa) inhibited BAT sympathetic nerve activity (SNA) and BAT thermogenesis. Subsequent nanoinjection of the α2-AR antagonist idazoxan (6 nmol) into the rRPa reversed the clonidine-evoked inhibition of BAT SNA and BAT thermogenesis. Systemic administration of the α2-AR agonists dexmedetomidine (25 µg/kg, i.v.) and clonidine (100 µg/kg, i.v.) inhibited shivering EMGs, BAT SNA, and BAT thermogenesis, effects that were reversed by nanoinjection of idazoxan (6 nmol) into the rRPa. Dexmedetomidine (100 µg/kg, i.p.) prevented and reversed lipopolysaccharide-evoked (10 µg/kg, i.p.) thermogenesis in free-behaving rats. Cholera toxin subunit b retrograde tracing from rRPa and pseudorabies virus transynaptic retrograde tracing from BAT combined with immunohistochemistry for catecholaminergic biosynthetic enzymes revealed the ventrolateral medulla as the source of catecholaminergic input to the rRPa and demonstrated that these catecholaminergic neurons are synaptically connected to BAT. Photostimulation of ventrolateral medulla neurons expressing the PRSx8-ChR2-mCherry lentiviral vector inhibited BAT SNA via activation of α2-ARs in the rRPa. These results indicate a potent inhibition of BAT and shivering thermogenesis by α2-AR activation in the rRPa, and suggest a therapeutic potential of α2-AR agonists for reducing potentially lethal elevations in body temperature during excessive fever.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Clonidina/farmacología , Idazoxan/farmacología , Núcleos del Rafe/efectos de los fármacos , Termogénesis/efectos de los fármacos , Animales , Electromiografía , Bulbo Raquídeo/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Tiritona/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos
12.
J Neurosci ; 33(36): 14512-25, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005302

RESUMEN

Since central activation of A1 adenosine receptors (A1ARs) plays an important role in the induction of the hypothermic and hypometabolic torpid state in hibernating mammals, we investigated the potential for the A1AR agonist N6-cyclohexyladenosine to induce a hypothermic, torpor-like state in the (nonhibernating) rat. Core and brown adipose tissue temperatures, EEG, heart rate, and arterial pressure were recorded in free-behaving rats, and c-fos expression in the brain was analyzed, following central administration of N6-cyclohexyladenosine. Additionally, we recorded the sympathetic nerve activity to brown adipose tissue; expiratory CO2 and skin, core, and brown adipose tissue temperatures; and shivering EMGs in anesthetized rats following central and localized, nucleus of the solitary tract, administration of N6-cyclohexyladenosine. In rats exposed to a cool (15°C) ambient temperature, central A1AR stimulation produced a torpor-like state similar to that in hibernating species and characterized by a marked fall in body temperature due to an inhibition of brown adipose tissue and shivering thermogenesis that is mediated by neurons in the nucleus of the solitary tract. During the induced hypothermia, EEG amplitude and heart rate were markedly reduced. Skipped heartbeats and transient bradycardias occurring during the hypothermia were vagally mediated since they were eliminated by systemic muscarinic receptor blockade. These findings demonstrate that a deeply hypothermic, torpor-like state can be pharmacologically induced in a nonhibernating mammal and that recovery of normothermic homeostasis ensues upon rewarming. These results support the potential for central activation of A1ARs to be used in the induction of a hypothermic, therapeutically beneficial state in humans.


Asunto(s)
Hipotermia/inducido químicamente , Receptor de Adenosina A1/metabolismo , Termogénesis/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/fisiología , Animales , Hibernación , Homeostasis , Masculino , Ratas , Ratas Wistar , Sistema Nervioso Simpático/fisiología
13.
Proc Natl Acad Sci U S A ; 107(19): 8848-53, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20421477

RESUMEN

Afferent neural transmission of temperature sensation from skin thermoreceptors to the central thermoregulatory system is important for the defense of body temperature against environmental thermal challenges. Here, we report a thermosensory pathway that triggers physiological heat-defense responses to elevated environmental temperature. Using in vivo electrophysiological and anatomical approaches in the rat, we found that neurons in the dorsal part of the lateral parabrachial nucleus (LPBd) glutamatergically transmit cutaneous warm signals from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area (POA). Intriguingly, these LPBd neurons are located adjacent to another group of neurons that mediate cutaneous cool signaling to the POA. Functional experiments revealed that this LPBd-POA warm sensory pathway is required to elicit autonomic heat-defense responses, such as cutaneous vasodilation, to skin-warming challenges. These findings provide a fundamental framework for understanding the neural circuitry maintaining thermal homeostasis, which is critical to survive severe environmental temperatures.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Calor , Sensación/fisiología , Animales , Fenómenos Electrofisiológicos , Glutamatos/metabolismo , Masculino , Neuronas/citología , Neuronas/fisiología , Área Preóptica/fisiología , Ratas , Ratas Sprague-Dawley , Piel/irrigación sanguínea , Temperatura Cutánea/fisiología , Vasodilatación/fisiología
14.
Temperature (Austin) ; 10(1): 136-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187834

RESUMEN

We identified the neural pathway of the hyperthermic response to TRPV1 antagonists. We showed that hyperthermia induced by i.v. AMG0347, AMG 517, or AMG8163 did not occur in rats with abdominal sensory nerves desensitized by pretreatment with a low i.p. dose of resiniferatoxin (RTX, TRPV1 agonist). However, neither bilateral vagotomy nor bilateral transection of the greater splanchnic nerve attenuated AMG0347-induced hyperthermia. Yet, this hyperthermia was attenuated by bilateral high cervical transection of the spinal dorsolateral funiculus (DLF). To explain the extra-splanchnic, spinal mediation of TRPV1 antagonist-induced hyperthermia, we proposed that abdominal signals that drive this hyperthermia originate in skeletal muscles - not viscera. If so, in order to prevent TRPV1 antagonist-induced hyperthermia, the desensitization caused by i.p. RTX should spread into the abdominal-wall muscles. Indeed, we found that the local hypoperfusion response to capsaicin (TRPV1 agonist) in the abdominal-wall muscles was absent in i.p. RTX-desensitized rats. We then showed that the most upstream (lateral parabrachial, LPB) and the most downstream (rostral raphe pallidus) nuclei of the intrabrain pathway that controls autonomic cold defenses are also required for the hyperthermic response to i.v. AMG0347. Injection of muscimol (inhibitor of neuronal activity) into the LPB or injection of glycine (inhibitory neurotransmitter) into the raphe blocked the hyperthermic response to i.v. AMG0347, whereas i.v. AMG0347 increased the number of c-Fos cells in the raphe. We conclude that the neural pathway of TRPV1 antagonist-induced hyperthermia involves TRPV1-expressing sensory nerves in trunk muscles, the DLF, and the same LPB-raphe pathway that controls autonomic cold defenses.

15.
J Neurosci ; 31(44): 15944-55, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049437

RESUMEN

Orexin (hypocretin) neurons, located exclusively in the PeF-LH, which includes the perifornical area (PeF), the lateral hypothalamus (LH), and lateral portions of the medial hypothalamus, have widespread projections and influence many physiological functions, including the autonomic regulation of body temperature and energy metabolism. Narcolepsy is characterized by the loss of orexin neurons and by disrupted sleep, but also by dysregulation of body temperature and by a strong tendency for obesity. Heat production (thermogenesis) in brown adipose tissue (BAT) contributes to the maintenance of body temperature and, through energy consumption, to body weight regulation. We identified a neural substrate for the influence of orexin neurons on BAT thermogenesis in rat. Nanoinjection of orexin-A (12 pmol) into the rostral raphe pallidus (rRPa), the site of BAT sympathetic premotor neurons, produced large, sustained increases in BAT sympathetic outflow and in BAT thermogenesis. Activation of neurons in the PeF-LH also enhanced BAT thermogenesis over a long time course. Combining viral retrograde tracing from BAT, or cholera toxin subunit b tracing from rRPa, with orexin immunohistochemistry revealed synaptic connections to BAT from orexin neurons in PeF-LH and from rRPa neurons with closely apposed, varicose orexin fibers, as well as a direct, orexinergic projection from PeF-LH to rRPa. These results indicate a potent modulation of BAT thermogenesis by orexin released from the terminals of orexin neurons in PeF-LH directly into the rRPa and provide a potential mechanism contributing to the disrupted regulation of body temperature and energy metabolism in the absence of orexin.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Hipotálamo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Núcleos del Rafe/metabolismo , Termogénesis/fisiología , Animales , Benzoxazoles/farmacología , Temperatura Corporal/efectos de los fármacos , Toxina del Cólera/metabolismo , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Técnicas de Transferencia de Gen , Globo Pálido/efectos de los fármacos , Globo Pálido/fisiología , Péptidos y Proteínas de Señalización Intracelular/farmacología , Masculino , Microinyecciones/métodos , N-Metilaspartato/farmacología , Naftiridinas , Neuropéptidos/farmacología , Neurotransmisores/farmacología , Orexinas , Poliestirenos/administración & dosificación , Núcleos del Rafe/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Termogénesis/efectos de los fármacos , Urea/análogos & derivados , Urea/farmacología , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
16.
Nat Neurosci ; 11(1): 62-71, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18084288

RESUMEN

Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.


Asunto(s)
Vías Aferentes/fisiología , Temperatura Corporal , Mapeo Encefálico , Neuronas Aferentes/fisiología , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Regulación de la Temperatura Corporal , Plexo Braquial/citología , Encéfalo , Toxina del Cólera/metabolismo , Electroencefalografía/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Investigación sobre Servicios de Salud , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Fosfopiruvato Hidratasa/metabolismo , Área Preóptica/efectos de los fármacos , Área Preóptica/fisiología , Área Preóptica/efectos de la radiación , Ratas , Ratas Sprague-Dawley
17.
Pharmacol Rev ; 61(3): 228-61, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19749171

RESUMEN

The development of antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel as pain therapeutics has revealed that these compounds cause hyperthermia in humans. This undesirable on-target side effect has triggered a surge of interest in the role of TRPV1 in thermoregulation and revived the hypothesis that TRPV1 channels serve as thermosensors. We review literature data on the distribution of TRPV1 channels in the body and on thermoregulatory responses to TRPV1 agonists and antagonists. We propose that two principal populations of TRPV1-expressing cells have connections with efferent thermoeffector pathways: 1) first-order sensory (polymodal), glutamatergic dorsal-root (and possibly nodose) ganglia neurons that innervate the abdominal viscera and 2) higher-order sensory, glutamatergic neurons presumably located in the median preoptic hypothalamic nucleus. We further hypothesize that all thermoregulatory responses to TRPV1 agonists and antagonists and thermoregulatory manifestations of TRPV1 desensitization stem from primary actions on these two neuronal populations. Agonists act primarily centrally on population 2; antagonists act primarily peripherally on population 1. We analyze what roles TRPV1 might play in thermoregulation and conclude that this channel does not serve as a thermosensor, at least not under physiological conditions. In the hypothalamus, TRPV1 channels are inactive at common brain temperatures. In the abdomen, TRPV1 channels are tonically activated, but not by temperature. However, tonic activation of visceral TRPV1 by nonthermal factors suppresses autonomic cold-defense effectors and, consequently, body temperature. Blockade of this activation by TRPV1 antagonists disinhibits thermoeffectors and causes hyperthermia. Strategies for creating hyperthermia-free TRPV1 antagonists are outlined. The potential physiological and pathological significance of TRPV1-mediated thermoregulatory effects is discussed.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Canales Catiónicos TRPV/fisiología , Animales , Humanos , Modelos Biológicos , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores
18.
Auton Neurosci ; 237: 102918, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823147

RESUMEN

In mammals, many types of psychological stressors elicit a variety of sympathoexcitatory responses paralleling the classic fight-or-flight response to a threat to survival, including increased body temperature via brown adipose tissue thermogenesis and cutaneous vasoconstriction, and increased skeletal muscle blood flow via tachycardia and visceral vasoconstriction. Although these responses are usually supportive for stress coping, aberrant sympathetic responses to stress can lead to clinical issues in psychosomatic medicine. Sympathetic stress responses are mediated mostly by sympathetic premotor drives from the rostral medullary raphe region (rMR) and partly by those from the rostral ventrolateral medulla (RVLM). Hypothalamomedullary descending pathways from the dorsomedial hypothalamus (DMH) to the rMR and RVLM mediate important, stress-driven sympathoexcitatory transmission to the premotor neurons to drive the thermal and cardiovascular responses. The DMH also likely sends an excitatory input to the paraventricular hypothalamic nucleus to stimulate stress hormone release. Neurons in the DMH receive a stress-related excitation from the dorsal peduncular cortex and dorsal tenia tecta (DP/DTT) in the ventromedial prefrontal cortex. By connecting the corticolimbic emotion circuit to the central sympathetic and somatic motor systems, the DP/DTT â†’ DMH pathway plays as the primary mediator of the psychosomatic signaling that drives a variety of sympathetic and behavioral stress responses. These brain regions together with other stress-related regions constitute a central neural network for physiological stress responses. This network model is relevant to understanding the central mechanisms by which stress and emotions affect autonomic regulations of homeostasis and to developing new therapeutic strategies for various stress-related disorders.


Asunto(s)
Regulación de la Temperatura Corporal , Termogénesis , Tejido Adiposo Pardo , Animales , Hipotálamo , Bulbo Raquídeo , Estrés Psicológico , Sistema Nervioso Simpático
19.
J Physiol ; 589(Pt 14): 3641-58, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21610139

RESUMEN

Shivering is a remarkable somatomotor thermogenic response that is controlled by brain mechanisms. We recorded EMGs in anaesthetized rats to elucidate the central neural circuitry for shivering and identified several brain regions whose thermoregulatory neurons comprise the efferent pathway driving shivering responses to skin cooling and pyrogenic stimulation. We simultaneously monitored parameters from sympathetic effectors: brown adipose tissue (BAT) temperature for non-shivering thermogenesis and arterial pressure and heart rate for cardiovascular responses. Acute skin cooling consistently increased EMG, BAT temperature and heart rate and these responses were eliminated by inhibition of neurons in the median preoptic nucleus (MnPO) with nanoinjection of muscimol. Stimulation of the MnPO evoked shivering, BAT thermogenesis and tachycardia, which were all reversed by antagonizing GABA(A) receptors in the medial preoptic area (MPO). Inhibition of neurons in the dorsomedial hypothalamus (DMH) or rostral raphe pallidus nucleus (rRPa) with muscimol or activation of 5-HT1A receptors in the rRPa with 8-OH-DPAT eliminated the shivering, BAT thermogenic, tachycardic and pressor responses evoked by skin cooling or by nanoinjection of prostaglandin (PG) E2, a pyrogenic mediator, into the MPO. These data are summarized with a schematic model in which the shivering as well as the sympathetic responses for cold defence and fever are driven by descending excitatory signalling through the DMH and the rRPa, which is under a tonic inhibitory control from a local circuit in the preoptic area. These results provide the interesting notion that, under the demand for increasing levels of heat production, parallel central efferent pathways control the somatic and sympathetic motor systems to drive thermogenesis.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Vías Eferentes/fisiología , Fiebre/fisiopatología , Área Preóptica/metabolismo , Área Preóptica/fisiología , Tiritona/fisiología , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Frío , Dinoprostona/farmacología , Vías Eferentes/metabolismo , Fiebre/metabolismo , Antagonistas de Receptores de GABA-A/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Masculino , Núcleo Talámico Mediodorsal/efectos de los fármacos , Núcleo Talámico Mediodorsal/metabolismo , Núcleo Talámico Mediodorsal/fisiología , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/fisiología , Muscimol/farmacología , N-Metilaspartato/farmacología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Área Preóptica/efectos de los fármacos , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/metabolismo , Núcleos del Rafe/fisiología , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de GABA-A/metabolismo , Tiritona/efectos de los fármacos , Temperatura Cutánea/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiología , Taquicardia/metabolismo , Taquicardia/patología , Termogénesis/efectos de los fármacos , Termogénesis/fisiología
20.
eNeuro ; 8(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707202

RESUMEN

The impairment of cold-evoked activation of brown adipose tissue (BAT) in rats fed a high-fat diet (HFD) requires the activity of a vagal afferent to the medial nucleus of the solitary tract (mNTS). We determined the role of transient receptor potential vanilloid 1 (TRPV1) activation in the mNTS, and of a dynorphin input to the median preoptic nucleus (MnPO) in the impaired BAT thermogenic response to cold in HFD-fed rats. The levels of some linoleic acid (LA) metabolites, which can act as endogenous TRPV1 agonists, were elevated in the NTS of HFD rats compared with chow-fed rats. In HFD rats, nanoinjections of the TRPV1 antagonist, capsazepine (CPZ) in the NTS rescued the impaired BAT sympathetic nerve activity (BAT SNA) and thermogenic responses to cold. In contrast, in chow-fed rats, cold-evoked BAT SNA and BAT thermogenesis were not changed by nanoinjections of CPZ into the NTS. Axon terminals of NTS neurons that project to the dorsal lateral parabrachial nucleus (LPBd) were closely apposed to LPBd neurons that project to the MnPO. Many of the neurons in the LPBd that expressed c-fos during cold challenge were dynorphinergic. In HFD rats, nanoinjections of the κ opioid receptor (KOR) antagonist, nor-binaltorphimine (nor-BNI), in the MnPO rescued the impaired BAT SNA and thermogenic responses to cold. These data suggest that HFD increases the content of endogenous ligands of TRPV1 in the NTS, which increases the drive to LPBd neurons that in turn release dynorphin in the MnPO to impair activation of BAT.


Asunto(s)
Tejido Adiposo Pardo , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio , Animales , Dieta Alta en Grasa , Dinorfinas , Obesidad , Área Preóptica , Ratas , Ratas Sprague-Dawley , Núcleo Solitario , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA