Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7966): 808-817, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344645

RESUMEN

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Asunto(s)
Cabello , Melanocitos , Transducción de Señal , Animales , Ratones , Cabello/citología , Cabello/crecimiento & desarrollo , Folículo Piloso/citología , Folículo Piloso/fisiología , Receptores de Hialuranos/metabolismo , Melanocitos/citología , Melanocitos/metabolismo , Nevo/metabolismo , Nevo/patología , Osteopontina/metabolismo , Células Madre/citología
2.
Genome Res ; 34(5): 665-679, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38777608

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is linked to abnormal derepression of the transcription activator DUX4. This effect is localized to a low percentage of cells, requiring single-cell analysis. However, single-cell/nucleus RNA-seq cannot fully capture the transcriptome of multinucleated large myotubes. To circumvent these issues, we use multiplexed error-robust fluorescent in situ hybridization (MERFISH) spatial transcriptomics that allows profiling of RNA transcripts at a subcellular resolution. We simultaneously examined spatial distributions of 140 genes, including 24 direct DUX4 targets, in in vitro differentiated myotubes and unfused mononuclear cells (MNCs) of control, isogenic D4Z4 contraction mutant and FSHD patient samples, as well as the individual nuclei within them. We find myocyte nuclei segregate into two clusters defined by the expression of DUX4 target genes, which is exclusively found in patient/mutant nuclei, whereas MNCs cluster based on developmental states. Patient/mutant myotubes are found in "FSHD-hi" and "FSHD-lo" states with the former signified by high DUX4 target expression and decreased muscle gene expression. Pseudotime analyses reveal a clear bifurcation of myoblast differentiation into control and FSHD-hi myotube branches, with variable numbers of DUX4 target-expressing nuclei found in multinucleated FSHD-hi myotubes. Gene coexpression modules related to extracellular matrix and stress gene ontologies are significantly altered in patient/mutant myotubes compared with the control. We also identify distinct subpathways within the DUX4 gene network that may differentially contribute to the disease transcriptomic phenotype. Taken together, our MERFISH-based study provides effective gene network profiling of multinucleated cells and identifies FSHD-induced transcriptomic alterations during myoblast differentiation.


Asunto(s)
Fibras Musculares Esqueléticas , Distrofia Muscular Facioescapulohumeral , Mioblastos , Análisis de la Célula Individual , Transcriptoma , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Distrofia Muscular Facioescapulohumeral/metabolismo , Humanos , Mioblastos/metabolismo , Análisis de la Célula Individual/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Diferenciación Celular/genética , Hibridación Fluorescente in Situ , Perfilación de la Expresión Génica/métodos
3.
Cell ; 149(2): 467-82, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500808

RESUMEN

T cell development comprises a stepwise process of commitment from a multipotent precursor. To define molecular mechanisms controlling this progression, we probed five stages spanning the commitment process using RNA-seq and ChIP-seq to track genome-wide shifts in transcription, cohorts of active transcription factor genes, histone modifications at diverse classes of cis-regulatory elements, and binding repertoire of GATA-3 and PU.1, transcription factors with complementary roles in T cell development. The results highlight potential promoter-distal cis-regulatory elements in play and reveal both activation sites and diverse mechanisms of repression that silence genes used in alternative lineages. Histone marking is dynamic and reversible, and though permissive marks anticipate, repressive marks often lag behind changes in transcription. In vivo binding of PU.1 and GATA-3 relative to epigenetic marking reveals distinctive factor-specific rules for recruitment of these crucial transcription factors to different subsets of their potential sites, dependent on dose and developmental context.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Linfocitos T/citología , Animales , Factor de Transcripción GATA3/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Código de Histonas , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Elementos Reguladores de la Transcripción , Transducción de Señal , Linfocitos T/metabolismo , Transactivadores/metabolismo , Transcripción Genética
4.
Cell ; 148(1-2): 84-98, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265404

RESUMEN

Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Transcripción Genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Humanos
5.
Nature ; 583(7818): 720-728, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728244

RESUMEN

Transcription factors are DNA-binding proteins that have key roles in gene regulation1,2. Genome-wide occupancy maps of transcriptional regulators are important for understanding gene regulation and its effects on diverse biological processes3-6. However, only a minority of the more than 1,600 transcription factors encoded in the human genome has been assayed. Here we present, as part of the ENCODE (Encyclopedia of DNA Elements) project, data and analyses from chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experiments using the human HepG2 cell line for 208 chromatin-associated proteins (CAPs). These comprise 171 transcription factors and 37 transcriptional cofactors and chromatin regulator proteins, and represent nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these CAPs form major groups associated predominantly with promoters or enhancers, or with both. We confirm and expand the current catalogue of DNA sequence motifs for transcription factors, and describe motifs that correspond to other transcription factors that are co-enriched with the primary ChIP target. For example, FOX family motifs are enriched in ChIP-seq peaks of 37 other CAPs. We show that motif content and occupancy patterns can distinguish between promoters and enhancers. This catalogue reveals high-occupancy target regions at which many CAPs associate, although each contains motifs for only a minority of the numerous associated transcription factors. These analyses provide a more complete overview of the gene regulatory networks that define this cell type, and demonstrate the usefulness of the large-scale production efforts of the ENCODE Consortium.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Conjuntos de Datos como Asunto , Elementos de Facilitación Genéticos/genética , Células Hep G2 , Humanos , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores de Transcripción/metabolismo
6.
Nature ; 583(7818): 699-710, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728249

RESUMEN

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


Asunto(s)
ADN/genética , Bases de Datos Genéticas , Genoma/genética , Genómica , Anotación de Secuencia Molecular , Sistema de Registros , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Cromatina/genética , Cromatina/metabolismo , ADN/química , Huella de ADN , Metilación de ADN/genética , Momento de Replicación del ADN , Desoxirribonucleasa I/metabolismo , Genoma Humano , Histonas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas de Unión al ARN/genética , Transcripción Genética/genética , Transposasas/metabolismo
7.
Genome Res ; 32(2): 389-402, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949670

RESUMEN

Accurate transcription start site (TSS) annotations are essential for understanding transcriptional regulation and its role in human disease. Gene collections such as GENCODE contain annotations for tens of thousands of TSSs, but not all of these annotations are experimentally validated nor do they contain information on cell type-specific usage. Therefore, we sought to generate a collection of experimentally validated TSSs by integrating RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression (RAMPAGE) data from 115 cell and tissue types, which resulted in a collection of approximately 50 thousand representative RAMPAGE peaks. These peaks are primarily proximal to GENCODE-annotated TSSs and are concordant with other transcription assays. Because RAMPAGE uses paired-end reads, we were then able to connect peaks to transcripts by analyzing the genomic positions of the 3' ends of read mates. Using this paired-end information, we classified the vast majority (37 thousand) of our RAMPAGE peaks as verified TSSs, updating TSS annotations for 20% of GENCODE genes. We also found that these updated TSS annotations are supported by epigenomic and other transcriptomic data sets. To show the utility of this RAMPAGE rPeak collection, we intersected it with the NHGRI/EBI genome-wide association study (GWAS) catalog and identified new candidate GWAS genes. Overall, our work shows the importance of integrating experimental data to further refine TSS annotations and provides a valuable resource for the biological community.


Asunto(s)
Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Regiones Promotoras Genéticas , Sitio de Iniciación de la Transcripción
8.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399090

RESUMEN

MOTIVATION: Weighted gene co-expression network analysis (WGCNA) is frequently used to identify modules of genes that are co-expressed across many RNA-seq samples. However, the current R implementation is slow, is not designed to compare modules between multiple WGCNA networks, and its results can be hard to interpret as well as to visualize. We introduce the PyWGCNA Python package, which is designed to identify co-expression modules from large RNA-seq datasets. PyWGCNA has a faster implementation than the R version of WGCNA and several additional downstream analysis modules for functional enrichment analysis using GO, KEGG, and REACTOME, inter-module analysis of protein-protein interactions, as well as comparison of multiple co-expression modules to each other and/or external lists of genes such as marker genes from single cell. RESULTS: We apply PyWGCNA to two distinct datasets of brain bulk RNA-seq from MODEL-AD to identify modules associated with the genotypes. We compare the resulting modules to each other to find shared co-expression signatures in the form of modules with significant overlap across the datasets. AVAILABILITY AND IMPLEMENTATION: The PyWGCNA library for Python 3 is available on PyPi at pypi.org/project/PyWGCNA and on GitHub at github.com/mortazavilab/PyWGCNA. The data underlying this article are available in GitHub at github.com/mortazavilab/PyWGCNA/tutorials/5xFAD_paper.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , RNA-Seq
9.
Nat Immunol ; 13(9): 802-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22910383

RESUMEN

Next-generation sequencing technologies need careful design of experiments and evaluation of results to meet field requirements. Here we discuss technical considerations for these high-throughput assays, together with criteria to assess the quality of the results and the necessary validation.


Asunto(s)
ADN/análisis , Perfilación de la Expresión Génica/métodos , Técnicas de Genotipaje/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , ARN/análisis , Animales , Humanos
10.
Alzheimers Dement ; 20(4): 2794-2816, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426371

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial etiology, including genetic factors that play a significant role in disease risk and resilience. However, the role of genetic diversity in preclinical AD studies has received limited attention. METHODS: We crossed five Collaborative Cross strains with 5xFAD C57BL/6J female mice to generate F1 mice with and without the 5xFAD transgene. Amyloid plaque pathology, microglial and astrocytic responses, neurofilament light chain levels, and gene expression were assessed at various ages. RESULTS: Genetic diversity significantly impacts AD-related pathology. Hybrid strains showed resistance to amyloid plaque formation and neuronal damage. Transcriptome diversity was maintained across ages and sexes, with observable strain-specific variations in AD-related phenotypes. Comparative gene expression analysis indicated correlations between mouse strains and human AD. DISCUSSION: Increasing genetic diversity promotes resilience to AD-related pathogenesis, relative to an inbred C57BL/6J background, reinforcing the importance of genetic diversity in uncovering resilience in the development of AD. HIGHLIGHTS: Genetic diversity's impact on AD in mice was explored. Diverse F1 mouse strains were used for AD study, via the Collaborative Cross. Strain-specific variations in AD pathology, glia, and transcription were found. Strains resilient to plaque formation and plasma neurofilament light chain (NfL) increases were identified. Correlations with human AD transcriptomics were observed.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Ratones , Humanos , Femenino , Animales , Enfermedad de Alzheimer/patología , Placa Amiloide/patología , Ratones Endogámicos C57BL , Microglía/metabolismo , Variación Genética/genética , Modelos Animales de Enfermedad , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo
11.
Alzheimers Dement ; 20(7): 4914-4934, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38506634

RESUMEN

BACKGROUND: Variants in ABCA7, a member of the ABC transporter superfamily, have been associated with increased risk for developing late onset Alzheimer's disease (LOAD). METHODS: CRISPR-Cas9 was used to generate an Abca7V1613M variant in mice, modeling the homologous human ABCA7V1599M variant, and extensive characterization was performed. RESULTS: Abca7V1613M microglia show differential gene expression profiles upon lipopolysaccharide challenge and increased phagocytic capacity. Homozygous Abca7V1613M mice display elevated circulating cholesterol and altered brain lipid composition. When crossed with 5xFAD mice, homozygous Abca7V1613M mice display fewer Thioflavin S-positive plaques, decreased amyloid beta (Aß) peptides, and altered amyloid precursor protein processing and trafficking. They also exhibit reduced Aß-associated inflammation, gliosis, and neuronal damage. DISCUSSION: Overall, homozygosity for the Abca7V1613M variant influences phagocytosis, response to inflammation, lipid metabolism, Aß pathology, and neuronal damage in mice. This variant may confer a gain of function and offer a protective effect against Alzheimer's disease-related pathology. HIGHLIGHTS: ABCA7 recognized as a top 10 risk gene for developing Alzheimer's disease. Loss of function mutations result in increased risk for LOAD. V1613M variant reduces amyloid beta plaque burden in 5xFAD mice. V1613M variant modulates APP processing and trafficking in 5xFAD mice. V1613M variant reduces amyloid beta-associated damage in 5xFAD mice.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones Transgénicos , Placa Amiloide , Animales , Ratones , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Placa Amiloide/patología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Neuronas/metabolismo , Neuronas/patología , Modelos Animales de Enfermedad , Humanos , Encéfalo/patología , Encéfalo/metabolismo , Microglía/metabolismo , Microglía/patología , Fagocitosis/genética , Precursor de Proteína beta-Amiloide/genética
12.
Alzheimers Dement ; 20(4): 2922-2942, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38460121

RESUMEN

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Neuroglía/patología , Placa Amiloide/patología , Humanos
13.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35348742

RESUMEN

The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.


Asunto(s)
Mariposas Diurnas , Visión de Colores , Animales , Mariposas Diurnas/genética , Visión de Colores/genética , Femenino , Opsinas/genética , Células Fotorreceptoras , Alas de Animales
15.
Nucleic Acids Res ; 49(20): 11868-11882, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34634799

RESUMEN

RNA molecules can fold into complex structures and interact with trans-acting factors to control their biology. Recent methods have been focused on developing novel tools to measure RNA structure transcriptome-wide, but their utility to study and predict RNA-protein interactions or RNA processing has been limited thus far. Here, we extend these studies with the first transcriptome-wide mapping method for cataloging RNA solvent accessibility, icLASER. By combining solvent accessibility (icLASER) with RNA flexibility (icSHAPE) data, we efficiently predict RNA-protein interactions transcriptome-wide and catalog RNA polyadenylation sites by RNA structure alone. These studies showcase the power of designing novel chemical approaches to studying RNA biology. Further, our study exemplifies merging complementary methods to measure RNA structure inside cells and its utility for predicting transcriptome-wide interactions that are critical for control of and regulation by RNA structure. We envision such approaches can be applied to studying different cell types or cells under varying conditions, using RNA structure and footprinting to characterize cellular interactions and processing involving RNA.


Asunto(s)
ARN/química , Transcriptoma , Células HeLa , Humanos , Poliadenilación , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN/métodos
16.
PLoS Genet ; 16(5): e1008754, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32365093

RESUMEN

FSHD is characterized by the misexpression of DUX4 in skeletal muscle. Although DUX4 upregulation is thought to be the pathogenic cause of FSHD, DUX4 is lowly expressed in patient samples, and analysis of the consequences of DUX4 expression has largely relied on artificial overexpression. To better understand the native expression profile of DUX4 and its targets, we performed bulk RNA-seq on a 6-day differentiation time-course in primary FSHD2 patient myoblasts. We identify a set of 54 genes upregulated in FSHD2 cells, termed FSHD-induced genes. Using single-cell and single-nucleus RNA-seq on myoblasts and differentiated myotubes, respectively, we captured, for the first time, DUX4 expressed at the single-nucleus level in a native state. We identified two populations of FSHD myotube nuclei based on low or high enrichment of DUX4 and FSHD-induced genes ("FSHD-Lo" and "FSHD Hi", respectively). FSHD-Hi myotube nuclei coexpress multiple DUX4 target genes including DUXA, LEUTX and ZSCAN4, and also upregulate cell cycle-related genes with significant enrichment of E2F target genes and p53 signaling activation. We found more FSHD-Hi nuclei than DUX4-positive nuclei, and confirmed with in situ RNA/protein detection that DUX4 transcribed in only one or two nuclei is sufficient for DUX4 protein to activate target genes across multiple nuclei within the same myotube. DUXA (the DUX4 paralog) is more widely expressed than DUX4, and depletion of DUXA suppressed the expression of LEUTX and ZSCAN4 in late, but not early, differentiation. The results suggest that the DUXA can take over the role of DUX4 to maintain target gene expression. These results provide a possible explanation as to why it is easier to detect DUX4 target genes than DUX4 itself in patient cells and raise the possibility of a self-sustaining network of gene dysregulation triggered by the limited DUX4 expression.


Asunto(s)
Núcleo Celular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapulohumeral , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Estudios de Casos y Controles , Diferenciación Celular , Núcleo Celular/química , Núcleo Celular/clasificación , Núcleo Celular/patología , Células Cultivadas , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/metabolismo , Mioblastos/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuenciación del Exoma
17.
Genome Res ; 29(11): 1900-1909, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31645363

RESUMEN

MicroRNAs (miRNAs) play a critical role as posttranscriptional regulators of gene expression. The ENCODE Project profiled the expression of miRNAs in an extensive set of organs during a time-course of mouse embryonic development and captured the expression dynamics of 785 miRNAs. We found distinct organ-specific and developmental stage-specific miRNA expression clusters, with an overall pattern of increasing organ-specific expression as embryonic development proceeds. Comparative analysis of conserved miRNAs in mouse and human revealed stronger clustering of expression patterns by organ type rather than by species. An analysis of messenger RNA expression clusters compared with miRNA expression clusters identifies the potential role of specific miRNA expression clusters in suppressing the expression of mRNAs specific to other developmental programs in the organ in which these miRNAs are expressed during embryonic development. Our results provide the most comprehensive time-course of miRNA expression as part of an integrated ENCODE reference data set for mouse embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , MicroARNs/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Embarazo , ARN Mensajero/genética
18.
J Neuroinflammation ; 19(1): 178, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820938

RESUMEN

BACKGROUND: The complement system is part of the innate immune system that clears pathogens and cellular debris. In the healthy brain, complement influences neurodevelopment and neurogenesis, synaptic pruning, clearance of neuronal blebs, recruitment of phagocytes, and protects from pathogens. However, excessive downstream complement activation that leads to generation of C5a, and C5a engagement with its receptor C5aR1, instigates a feed-forward loop of inflammation, injury, and neuronal death, making C5aR1 a potential therapeutic target for neuroinflammatory disorders. C5aR1 ablation in the Arctic (Arc) model of Alzheimer's disease protects against cognitive decline and neuronal injury without altering amyloid plaque accumulation. METHODS: To elucidate the effects of C5a-C5aR1 signaling on AD pathology, we crossed Arc mice with a C5a-overexpressing mouse (ArcC5a+) and tested hippocampal memory. RNA-seq was performed on hippocampus and cortex from Arc, ArcC5aR1KO, and ArcC5a+ mice at 2.7-10 months and age-matched controls to assess mechanisms involved in each system. Immunohistochemistry was used to probe for protein markers of microglia and astrocytes activation states. RESULTS: ArcC5a+ mice had accelerated cognitive decline compared to Arc. Deletion of C5ar1 delayed or prevented the expression of some, but not all, AD-associated genes in the hippocampus and a subset of pan-reactive and A1 reactive astrocyte genes, indicating a separation between genes induced by amyloid plaques alone and those influenced by C5a-C5aR1 signaling. Biological processes associated with AD and AD mouse models, including inflammatory signaling, microglial cell activation, and astrocyte migration, were delayed in the ArcC5aR1KO hippocampus. Interestingly, C5a overexpression also delayed the increase of some AD-, complement-, and astrocyte-associated genes, suggesting the possible involvement of neuroprotective C5aR2. However, these pathways were enhanced in older ArcC5a+ mice compared to Arc. Immunohistochemistry confirmed that C5a-C5aR1 modulation in Arc mice delayed the increase in CD11c-positive microglia, while not affecting other pan-reactive microglial or astrocyte markers. CONCLUSION: C5a-C5aR1 signaling in AD largely exerts its effects by enhancing microglial activation pathways that accelerate disease progression. While C5a may have neuroprotective effects via C5aR2, engagement of C5a with C5aR1 is detrimental in AD models. These data support specific pharmacological inhibition of C5aR1 as a potential therapeutic strategy to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Fenómenos Biológicos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Ratones , Microglía/metabolismo , Placa Amiloide/metabolismo , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Transducción de Señal
19.
Bioinformatics ; 37(9): 1322-1323, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32991665

RESUMEN

MOTIVATION: Long-read RNA-sequencing technologies such as PacBio and Oxford Nanopore have discovered an explosion of new transcript isoforms that are difficult to visually analyze using currently available tools. We introduce the Swan Python library, which is designed to analyze and visualize transcript models. RESULTS: Swan finds 4909 differentially expressed transcripts between cell lines HepG2 and HFFc6, including 279 that are differentially expressed even though the parent gene is not. Additionally, Swan discovers 285 reproducible exon skipping and 47 intron retention events not recorded in the GENCODE v29 annotation. AVAILABILITY AND IMPLEMENTATION: The Swan library for Python 3 is available on PyPi at https://pypi.org/project/swan-vis/ and on GitHub at https://github.com/mortazavilab/swan_vis.


Asunto(s)
Anseriformes , Transcriptoma , Animales , Biblioteca de Genes , Análisis de Secuencia de ARN , Programas Informáticos
20.
PLoS Biol ; 17(4): e2006506, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30978178

RESUMEN

The differentiation of self-renewing progenitor cells requires not only the regulation of lineage- and developmental stage-specific genes but also the coordinated adaptation of housekeeping functions from a metabolically active, proliferative state toward quiescence. How metabolic and cell-cycle states are coordinated with the regulation of cell type-specific genes is an important question, because dissociation between differentiation, cell cycle, and metabolic states is a hallmark of cancer. Here, we use a model system to systematically identify key transcriptional regulators of Ikaros-dependent B cell-progenitor differentiation. We find that the coordinated regulation of housekeeping functions and tissue-specific gene expression requires a feedforward circuit whereby Ikaros down-regulates the expression of Myc. Our findings show how coordination between differentiation and housekeeping states can be achieved by interconnected regulators. Similar principles likely coordinate differentiation and housekeeping functions during progenitor cell differentiation in other cell lineages.


Asunto(s)
Linfocitos B/citología , Genes myc , Células Precursoras de Linfocitos B/citología , Animales , Linfocitos B/metabolismo , Ciclo Celular/fisiología , Diferenciación Celular/genética , Linaje de la Célula , Bases de Datos Genéticas , Regulación hacia Abajo , Regulación de la Expresión Génica , Genes Esenciales , Humanos , Factor de Transcripción Ikaros/metabolismo , Activación de Linfocitos , Ratones , Células Precursoras de Linfocitos B/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA