Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 267: 115623, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890250

RESUMEN

Metalaxyl (MET) and myclobutanil (MYC) are two widely used chiral fungicides that may pose health risks to non-occupationally exposed populations. Here, the two fungicides were enantiomer-specific quantified in the dietary food and urine of residents in an Eastern China city, to determine the exposure and excretion of these contaminants in different populations. Results indicate that residues of MET and MYC varied with different food items at 0.42-0.86 ng/g fresh weight (FW) and 0.18-0.33 ng/g FW, respectively. In urine samples, the residual levels after creatinine adjusting (CR) ranged from 10.2 to 1715.4 ng/g CR for MET and were below the detection limit up to 320.7 ng/g CR for MYC. Significant age- and gender-related differences were separately found in urinary MET and MYC of different populations. Monte-Carlo simulations suggested that children had higher daily dietary intake (DDI) but lower urinary excretion (DUE) rates than youths, and thus may suffer higher body burdens. The residues of antifungally ineffective enantiomers (S-MET and R-MYC) were slightly higher than their antipodes in foods. Moreover, the enantiomer-selective urinary excretion resulted in higher retention of S-MET and R-MYC in the human body. Our results suggest that both dietary intake and urinary excretion should be enantiomer-specifically considered when assessing the exposure risk and body burden of chiral fungicides in the non-occupationally exposed population. Furthermore, substitutive application of enantiomer-enriched fungicide formulations can not only benefit the antifungal efficacy but also be safer for human health.


Asunto(s)
Fungicidas Industriales , Contaminantes del Suelo , Niño , Humanos , Adolescente , Biodegradación Ambiental , Fungicidas Industriales/análisis , Contaminantes del Suelo/análisis , Estereoisomerismo , Ingestión de Alimentos
2.
Small ; 16(21): e1906055, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31899607

RESUMEN

The pathogenicity and antimicrobial properties of engineered nanomaterials (ENMs) are relatively well studied. However, less is known regarding the interactions of ENMs and agriculturally beneficial microorganisms that affect food security. Nanoceria (CeO2 nanoparticles (NPs)), multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) have been previously shown to inhibit symbiotic N2 fixation in soybeans, but direct rhizobial susceptibility is uncertain. Here, Bradyrhizobium diazoefficiens associated with symbiotic N2 fixation in soybeans is assessed, evaluating the role of soybean root exudates (RE) on ENM-bacterial interactions and the effects of CeO2 NPs, MWCNTs, GNPs, and CB on bacterial growth and gene expression. Although bacterial growth is inhibited by 50 mg L-1 CeO2 NPs, MWCNTs, and CB, all ENMs at 0.1 and 10 mg L-1 cause a global transcriptomic response that is mitigated by RE. ENMs may interfere with plant-bacterial signaling, as evidenced by suppressed upregulation of genes induced by RE, and downregulation of genes encoding transport RNA, which facilitates nodulation signaling. MWCNTs and CeO2 NPs inhibit the expression of genes conferring B. diazoefficiens nodulation competitiveness. Surprisingly, the transcriptomic effects on B. diazoefficiens are similar for these two ENMs, indicating that physical, not chemical, ENM properties explain the observed effects.


Asunto(s)
Bradyrhizobium , Cerio , Glycine max , Nanotubos de Carbono , Nodulación de la Raíz de la Planta , Bradyrhizobium/efectos de los fármacos , Cerio/química , Cerio/farmacología , Nanotubos de Carbono/química , Nodulación de la Raíz de la Planta/efectos de los fármacos , Glycine max/microbiología
3.
BMC Microbiol ; 20(1): 115, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32410574

RESUMEN

BACKGROUND: Bacterial biofilms are surface-adherent microbial communities in which individual cells are surrounded by a self-produced extracellular matrix of polysaccharides, extracellular DNA (eDNA) and proteins. Interactions among matrix components within biofilms are responsible for creating an adaptable structure during biofilm development. However, it is unclear how the interactions among matrix components contribute to the construction of the three-dimensional (3D) biofilm architecture. RESULTS: DNase I treatment significantly inhibited Bacillus subtilis biofilm formation in the early phases of biofilm development. Confocal laser scanning microscopy (CLSM) and image analysis revealed that eDNA was cooperative with exopolysaccharide (EPS) in the early stages of B. subtilis biofilm development, while EPS played a major structural role in the later stages. In addition, deletion of the EPS production gene epsG in B. subtilis SBE1 resulted in loss of the interaction between EPS and eDNA and reduced the biofilm biomass in pellicles at the air-liquid interface. The physical interaction between these two essential biofilm matrix components was confirmed by isothermal titration calorimetry (ITC). CONCLUSIONS: Biofilm 3D structures become interconnected through surrounding eDNA and EPS. eDNA interacts with EPS in the early phases of biofilm development, while EPS mainly participates in the maturation of biofilms. The findings of this study provide a better understanding of the role of the interaction between eDNA and EPS in shaping the biofilm 3D matrix structure and biofilm formation.


Asunto(s)
Bacillus subtilis/fisiología , Biopelículas/crecimiento & desarrollo , ADN Bacteriano/metabolismo , Polisacáridos Bacterianos/metabolismo , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Desoxirribonucleasa I/farmacología , Microscopía de Fuerza Atómica , Microscopía Confocal
4.
Environ Sci Technol ; 50(16): 8876-85, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27398725

RESUMEN

Consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using (14)C-labeled MWCNT ((14)C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub µg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) µg/mg and (21.9 ± 4.2) µg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) µg/mg and (3.4 ± 1.1) µg/mg dry mass by trophic transfer and direct uptake, respectively. Although MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.


Asunto(s)
Nanotubos de Carbono/química , Tetrahymena thermophila , Cadena Alimentaria , Pseudomonas aeruginosa
5.
Environ Sci Technol ; 50(7): 3965-74, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26962674

RESUMEN

Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.


Asunto(s)
Bacterias/efectos de los fármacos , Desecación , Hongos/efectos de los fármacos , Grafito/farmacología , Nanotubos de Carbono/química , Microbiología del Suelo , Aerobiosis/efectos de los fármacos , Bacterias/genética , Biomasa , ADN Bacteriano/genética , Nanotubos de Carbono/ultraestructura , Polimorfismo de Longitud del Fragmento de Restricción , Factores de Tiempo
6.
Environ Sci Technol ; 50(12): 6124-45, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27177237

RESUMEN

Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.


Asunto(s)
Ecología , Nanoestructuras , Ecosistema , Ecotoxicología , Ambiente , Humanos
7.
Environ Sci Technol ; 48(15): 8760-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000358

RESUMEN

Hyperspectral imaging with enhanced darkfield microscopy (HSI-M) possesses unique advantages in its simplicity and non-invasiveness. In consideration of the urgent need for profound knowledge on the behavior and effects of engineered nanoparticles (NPs), here, we determined the capability of HSI-M for examining cellular uptake of different metal-based NPs, including nanosized metals (silver and gold, both citrate stabilized), metal oxides (copper oxide and titanium dioxide), and CdSe/ZnS core/shell quantum dots at subtoxic concentrations. Specifically, we demonstrated that HSI-M can be used to detect and semi-quantify these NPs in the ciliated protozoan Tetrahymena thermophila as a model aquatic organism. Detection and semi-quantification were achieved on the basis of spectral libraries for the NPs suspended in extracellular substances secreted by this single-celled organism, accounting for matrix effects. HSI-M was able to differentiate between NP types, provided that spectral profiles were significantly different from each other. This difference, in turn, depended upon NP type, size, agglomeration status, and position relative to the focal plane. As an exception among the NPs analyzed in this study, titanium dioxide NPs showed spectral similarities compared to cell material of unexposed control cells, leading to false positives. High biological variability resulted in highly variable uptake of NPs in cells of the same sample as well as between different exposures. We therefore encourage the development of techniques able to reduce the currently long analysis times that still hamper the acquisition of statistically strong data sets. Overall, this study demonstrates the potential and challenges of HSI-M in monitoring cellular uptake of synthetic NPs.


Asunto(s)
Metales/metabolismo , Microscopía/métodos , Nanopartículas/metabolismo , Tetrahymena thermophila/metabolismo , Animales , Oro/metabolismo , Nanopartículas del Metal , Óxidos , Puntos Cuánticos/metabolismo , Plata/metabolismo , Titanio/metabolismo
8.
Environ Sci Technol ; 48(18): 10541-51, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25158225

RESUMEN

Manufactured nanomaterials (MNMs) are increasingly produced and used in consumer goods, yet our knowledge regarding their environmental risks is limited. Environmental risks are assessed by characterizing exposure levels and biological receptor effects. As MNMs have rarely been quantified in environmental samples, our understanding of exposure level is limited. Absent direct measurements, environmental MNM concentrations are estimated from exposure modeling. Hazard, the potential for effects on biological receptors, is measured in the laboratory using a range of administered MNM concentrations. Yet concerns have been raised regarding the "relevancy" of hazard assessments, particularly when the administered MNM concentrations exceed those predicted to occur in the environment. What MNM concentrations are administered in hazard assessments and which are "environmentally relevant"? This review regards MNM concentrations in hazard assessments, from over 600 peer-reviewed articles published between 2008 and 2013. Some administered MNM concentrations overlap with, but many diverge from, predicted environmental concentrations. Other uncertainties influence the environmental relevance of current hazard assessments and exposure models, including test conditions, bioavailable concentrations, mode of action, MNM production volumes, and model validation. Therefore, it may be premature for MNM risk research to sanction information on the basis of concentration "environmental relevance".


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Sustancias Peligrosas/análisis , Modelos Teóricos , Nanoestructuras/análisis , Medición de Riesgo
9.
Adv Sci (Weinh) ; 11(23): e2310314, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582521

RESUMEN

Understanding the environmental health and safety of nanomaterials (NanoEHS) is essential for the sustained development of nanotechnology. Although extensive research over the past two decades has elucidated the phenomena, mechanisms, and implications of nanomaterials in cellular and organismal models, the active remediation of the adverse biological and environmental effects of nanomaterials remains largely unexplored. Inspired by recent developments in functional amyloids for biomedical and environmental engineering, this work shows their new utility as metallothionein mimics in the strategically important area of NanoEHS. Specifically, metal ions released from CuO and ZnO nanoparticles are sequestered through cysteine coordination and electrostatic interactions with beta-lactoglobulin (bLg) amyloid, as revealed by inductively coupled plasma mass spectrometry and molecular dynamics simulations. The toxicity of the metal oxide nanoparticles is subsequently mitigated by functional amyloids, as validated by cell viability and apoptosis assays in vitro and murine survival and biomarker assays in vivo. As bLg amyloid fibrils can be readily produced from whey in large quantities at a low cost, the study offers a crucial strategy for remediating the biological and environmental footprints of transition metal oxide nanomaterials.


Asunto(s)
Amiloide , Cobre , Animales , Ratones , Amiloide/metabolismo , Amiloide/química , Amiloide/toxicidad , Cobre/toxicidad , Cobre/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Lactoglobulinas/química , Supervivencia Celular/efectos de los fármacos , Simulación de Dinámica Molecular , Humanos , Óxidos/toxicidad , Óxidos/química
10.
Nanotechnology ; 24(34): 345101, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23899823

RESUMEN

We report on the dose-dependent inhibition of firefly luciferase activity induced by exposure of the enzyme to 20 nm citrate-coated silver nanoparticles (AgNPs). The inhibition mechanism was examined by characterizing the physicochemical properties and biophysical interactions of the enzyme and the AgNPs. Consistently, binding of the enzyme induced an increase in zeta potential from -22 to 6 mV for the AgNPs, triggered a red-shift of 44 nm in the absorbance peak of the AgNPs, and rendered a 'protein corona' of 20 nm in thickness on the nanoparticle surfaces. However, the secondary structures of the enzyme were only marginally affected upon formation of the protein corona, as verified by circular dichroism spectroscopy measurement and multiscale discrete molecular dynamics simulations. Rather, inductively coupled plasma mass spectrometry measurement revealed a significant ion release from the AgNPs. The released silver ions could readily react with the cysteine residues and N-groups of the enzyme to alter the physicochemical environment of their neighboring catalytic site and subsequently impair the enzymatic activity.


Asunto(s)
Luciferasas de Luciérnaga/metabolismo , Nanopartículas del Metal/química , Plata/metabolismo , Oro/análisis , Iones , Luciferasas de Luciérnaga/antagonistas & inhibidores , Luciferasas de Luciérnaga/química , Nanopartículas del Metal/ultraestructura , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Plata/análisis , Espectrofotometría Ultravioleta , Electricidad Estática
11.
Arch Toxicol ; 87(7): 1181-200, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23728526

RESUMEN

Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the 'non-target' organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.


Asunto(s)
Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Pruebas de Toxicidad , Óxido de Zinc/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Especificidad de la Especie , Pruebas de Toxicidad/métodos
12.
Chemosphere ; 329: 138692, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059203

RESUMEN

The accumulation of antibiotics in the environment has ecological impacts that have received less attention than the human health risks of antibiotics, although the effects could be far-reaching. This review discusses the effects of antibiotics on the health of fish and zooplankton, manifesting in direct or dysbiosis-mediated physiological impairment. Acute effects of antibiotics in these organism groups are usually induced at high concentrations (LC50 at ∼100-1000 mg/L) that are not commonly present in aquatic environments. However, when exposed to sub-lethal, environmentally relevant levels of antibiotics (ng/L-µg/L) disruption of physiological homeostasis, development, and fecundity can occur. Antibiotics at similar or lower concentrations can induce dysbiosis of gut microbiota which can affect the health of fish and invertebrates. We show that the data about molecular-level effects of antibiotics at low exposure concentrations are limited, hindering environmental risk assessment and species sensitivity analysis. Fish and crustaceans (Daphnia sp.) were the two groups of aquatic organisms used most often for antibiotic toxicity testing, including microbiota analysis. While low levels of antibiotics impact the composition and function of gut microbiota in aquatic organisms, the correlation and causality of these changes to host physiology are not straightforward. In some cases, negative or lack of correlation have occurred, and, unexpectedly, gut microbial diversity has been unaffected or increased upon exposure to environmental levels of antibiotics. Efforts to incorporate functional analyses of gut microbiota are beginning to provide valuable mechanistic information, but more data is needed for ecological risk assessment of antibiotics.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Animales , Humanos , Antibacterianos/toxicidad , Disbiosis , Invertebrados , Peces , Organismos Acuáticos
13.
Sci Total Environ ; 873: 162439, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36848992

RESUMEN

Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.


Asunto(s)
Rutas de Resultados Adversos , Fluorocarburos , Masculino , Animales , Ratones , Ratas , Semen , Motilidad Espermática , Sustancias Peligrosas , Fluorocarburos/toxicidad , Medición de Riesgo
14.
Toxicology ; 494: 153566, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263573

RESUMEN

Environmental and human monitoring studies have witnessed increasing occurrence of emerging per-/poly-fluoroalkyl substances (ePFASs) worldwide. Three classes of ePFASs, namely chlorinated polyfluoroalkylether sulfonic acids, hexafluoropropylene oxide homologues and short-chain perfluoroalkyl acids attracted the most attention. It is, therefore, the goal of this review to systematically and critically analyse the toxicity and toxicological mechanisms of these ePFASs based on the papers published between 2017 and 2022. The review summarized the main findings from both in vivo and in vitro studies, covering the hepatotoxicity of ePFASs and their interference with the endocrine system, including reproductive, developmental and thyroid toxicity. It also summarized the changes in gene expression in the hypothalamic-pituitary-thyroid axis and hypothalamic-pituitary-gonad axis of the model organisms after ePFASs exposure. The changes in gene expression in vitro and in vivo provide a clearer understanding of the toxicological mechanisms of ePFASs interference on hormonal levels (i.e., estradiol, testosterone, and thyroid hormones), developmental disturbance (e.g., swim bladder dysfunction) and lipid metabolism disruption (e.g., lipid droplet accumulation and hepatomegaly). In the end, future research directions on the toxicological mechanisms of ePFASs are suggested.


Asunto(s)
Fluorocarburos , Glándula Tiroides , Humanos , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Testosterona/metabolismo , Estradiol/metabolismo , Expresión Génica , Fluorocarburos/toxicidad , Fluorocarburos/metabolismo
15.
Sci Total Environ ; 901: 166257, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37574057

RESUMEN

Perfluorooctanoic acid (PFOA) alternatives such as hexafluoropropylene oxide homologs (HFPOs) cause concern due to increased occurrence in the environment as well as potential bioaccumulation and toxicity. HFPOs have been demonstrated to activate the estrogen receptor (ER) pathway. The ER pathway is homologous and connected to the estrogen-related receptor (ERR) pathway, but HFPOs effects on the ERR pathway have not been studied. Hence, we assessed the potential estrogenic effects of HFPOs via ERRγ pathway. In vitro assays revealed that HFPO dimeric, trimeric, and tetrameric acids (HFPO-DA, -TA, and -TeA, respectively), acted as ERRγ agonists, activating the transcription of both human and zebrafish ERRγ at low concentrations, but inhibiting zebrafish ERRγ at high concentrations. We also found that HFPO-TA promoted the human endometrial cancer cells (Ishikawa cells) proliferation via ERRγ/EGF, Cyclin D1 pathway. The HFPO-TA-induced proliferation of Ishikawa cells was inhibited by co-exposure with a specific antagonist of ERRγ, GSK5182. In vivo exposure of female zebrafish to HFPO-TA disturbed sex hormone levels, interfered with the gene expression involved in estrogen synthesis and follicle regulation, and caused histopathological lesions in the ovaries, which were similar to those induced by a known ERRγ agonist GSK4716. Taken together, this study revealed a new mechanism concerning the estrogenic effect of HFPOs via activation of the ERRγ pathway.

16.
Sci Total Environ ; 858(Pt 1): 159755, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349636

RESUMEN

Antibiotics are emerging environmental contaminants with wide attention due to their high consumption and pseudo-persistence in the environment. They have been shown to induce obesity or obesity-related metabolic diseases in experimental animals, but the underlying toxicological mechanisms remain unclear. Here, the disruptive effects of four commonly used antibiotics, namely doxycycline (DC), enrofloxacin (ENR), florfenicol (FF) and sulfamethazine (SMT) on lipid metabolism were investigated in zebrafish (Danio rerio) larvae and murine preadipocyte cell line. Triglyceride (TG) content was reduced after 1 ng/L DC or ENR exposure but was increased at higher concentrations up to 100 mg/L. FF increased and SMT reduced TG content but did not show any concentration dependence. None of the antibiotics had any significant effect on total cholesterol (TC) content in zebrafish except 100 µg/L SMT. Expression levels of 8 lipid metabolism-related genes were also quantified. SMT was most disruptive by up-regulating six genes, followed by FF which up-regulated four genes and down-regulated one gene, whereas DC and ENR both up-regulated one gene. In 3T3-L1 preadipocytes, ENR, FF, and SMT in general increased TG content, while 100 mg/L FF reduced TG substantially. DC did not show any effect up to 10 mg/L, at which TG increased significantly. FF and SMT increased TC slightly at low concentrations but reduced it at high concentrations, whereas TC, DC and ENR had no effect at any tested concentrations. Gene expression measurement also indicated that SMT was most disruptive, followed by FF, DC, and ENR. Reporter gene assays showed that only SMT inhibited the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). The above experimental results and clustering analysis demonstrate that the four antibiotics exerted disruption on lipid metabolism through different mechanisms, and one of the mechanisms for SMT may be inhibition of PPARγ transcriptional activity.


Asunto(s)
Metabolismo de los Lípidos , Pez Cebra , Ratones , Animales , Células 3T3-L1 , Pez Cebra/metabolismo , Larva , Antibacterianos/farmacología , PPAR gamma/metabolismo , Triglicéridos/metabolismo , Enrofloxacina , Doxiciclina , Obesidad
17.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202465

RESUMEN

Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast Saccharomyces cerevisiae as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.

18.
Environ Sci Technol ; 46(21): 12178-85, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23046143

RESUMEN

The effects of ZnO nanoparticles (NPs) interacting with single-celled green algae, Chlorella sp., have been found to be bilateral. Specifically, our electron microscopy, plant cell, and fluorescence assays showed that the adsorption and aggregation of ZnO NPs compromised algal cell morphology, viability, and membrane integrity, resulting from zinc ion dissolution as well as possible mechanical cell damage induced by the NPs. Conversely, algal cells displayed a remarkable capability of self-protection by minimizing their surface area through aggregation mediated by the oppositely charged metal ions and suppressing zinc ion release from the NPs through exudation, as evidenced by inductively coupled plasma mass spectrometry, zeta potential, and attenuated total reflectance-Fourier transform infrared spectroscopy. This study illustrates the adaptive nature and complexity in potential ecological response to discharged nanomaterials.


Asunto(s)
Chlorella/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Óxido de Zinc/toxicidad , Adaptación Fisiológica , Adsorción , Chlorella/química , Chlorella/fisiología , Potenciales de la Membrana/efectos de los fármacos , Nanopartículas del Metal/química , Óxido de Zinc/química
19.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500887

RESUMEN

Nanomaterial-based solutions for microorganism-related issues are gaining interest in medical fields, consumer applications, and agriculture [...].

20.
J Hazard Mater ; 430: 128365, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35150996

RESUMEN

Iron (hydr)oxides and their association with organic matter significantly affect the mobility of heavy metals in natural soils and sediments. However, the behavior of cadmium (Cd) during crystalline iron (hydr)oxide formation in the presence of humic acid (HA) is still unknown. In this study, the speciation of Cd in iron (hydr)oxide-HA coprecipitates were studied by extraction, surface complexation model (SCM) calculation and characterization of the composites during the aging. The results showed that aging promoted the stabilization of ~30-50% of the added Cd ions with minerals in the binary iron (hydr)oxide systems. The reduction of Cd occurred earlier than hematite formation, indicating that the aggregation of amorphous iron (hydr)oxide led to the initial immobilization of Cd. The presence of HA restricted the crystallization of iron (hydr)oxide by the formation of tight mineral nanoparticle-HA aggregates, while there were negligible changes in the speciation of Cd and Fe during aging at high HA concentrations. Therefore, HA promoted the adsorption of Cd onto amorphous iron (hydr)oxide but limited the partition of Cd to mineral aggregates. The knowledge about the role of HA in iron (hydr)oxide transformation and Cd speciation is of great significance for the prediction of heavy metal behavior in soils and sediments.


Asunto(s)
Cadmio , Sustancias Húmicas , Adsorción , Cadmio/química , Compuestos Férricos/química , Sustancias Húmicas/análisis , Hierro , Minerales/química , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA