Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell Proteomics ; 19(2): 326-343, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31852836

RESUMEN

The human MASTL (Microtubule-associated serine/threonine kinase-like) gene encodes an essential protein in the cell cycle. MASTL is a key factor preventing early dephosphorylation of M-phase targets of Cdk1/CycB. Little is known about the mechanism of MASTL activation and regulation. MASTL contains a non-conserved insertion of 550 residues within its activation loop, splitting the kinase domain, and making it unique. Here, we show that this non-conserved middle region (NCMR) of the protein is crucial for target specificity and activity. We performed a phosphoproteomic assay with different MASTL constructs identifying key phosphorylation sites for its activation and determining whether they arise from autophosphorylation or exogenous kinases, thus generating an activation model. Hydrogen/deuterium exchange data complements this analysis revealing that the C-lobe in full-length MASTL forms a stable structure, whereas the N-lobe is dynamic and the NCMR and C-tail contain few localized regions with higher-order structure. Our results indicate that truncated versions of MASTL conserving a cryptic C-Lobe in the NCMR, display catalytic activity and different targets, thus establishing a possible link with truncated mutations observed in cancer-related databases.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Proteínas Serina-Treonina Quinasas , Catálisis , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Nature ; 431(7007): 481-5, 2004 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-15386017

RESUMEN

Retroviruses are the aetiological agents of a range of human diseases including AIDS and T-cell leukaemias. They follow complex life cycles, which are still only partly understood at the molecular level. Maturation of newly formed retroviral particles is an essential step in production of infectious virions, and requires proteolytic cleavage of Gag polyproteins in the immature particle to form the matrix, capsid and nucleocapsid proteins present in the mature virion. Capsid proteins associate to form a dense viral core that may be spherical, cylindrical or conical depending on the genus of the virus. Nonetheless, these assemblies all appear to be composed of a lattice formed from hexagonal rings, each containing six capsid monomers. Here, we describe the X-ray structure of an individual hexagonal assembly from N-tropic murine leukaemia virus (N-MLV). The interface between capsid monomers is generally polar, consistent with weak interactions within the hexamer. Similar architectures are probably crucial for the regulation of capsid assembly and disassembly in all retroviruses. Together, these observations provide new insights into retroviral uncoating and how cellular restriction factors may interfere with viral replication.


Asunto(s)
Proteínas de la Cápside/química , Virus de la Leucemia Murina/química , Secuencia de Aminoácidos , Sitios de Unión , Cápside/química , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ensamble de Virus
3.
Nat Commun ; 9(1): 2535, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955062

RESUMEN

Tousled-like kinases (TLKs) are required for genome stability and normal development in numerous organisms and have been implicated in breast cancer and intellectual disability. In humans, the similar TLK1 and TLK2 interact with each other and TLK activity enhances ASF1 histone binding and is inhibited by the DNA damage response, although the molecular mechanisms of TLK regulation remain unclear. Here we describe the crystal structure of the TLK2 kinase domain. We show that the coiled-coil domains mediate dimerization and are essential for activation through ordered autophosphorylation that promotes higher order oligomers that locally increase TLK2 activity. We show that TLK2 mutations involved in intellectual disability impair kinase activity, and the docking of several small-molecule inhibitors of TLK activity suggest that the crystal structure will be useful for guiding the rationale design of new inhibition strategies. Together our results provide insights into the structure and molecular regulation of the TLKs.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Indoles/química , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Cinética , Simulación del Acoplamiento Molecular , Mutación , Oximas , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
4.
Front Mol Biosci ; 4: 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396859

RESUMEN

Centrosomal P4.1-associated protein (CPAP) is a cell cycle regulated protein fundamental for centrosome assembly and centriole elongation. In humans, the region between residues 897-1338 of CPAP mediates interactions with other proteins and includes a homodimerization domain. CPAP mutations cause primary autosomal recessive microcephaly and Seckel syndrome. Despite of the biological/clinical relevance of CPAP, its mechanistic behavior remains unclear and its C-terminus (the G-box/TCP domain) is the only part whose structure has been solved. This situation is perhaps due in part to the challenges that represent obtaining the protein in a soluble, homogeneous state for structural studies. Our work constitutes a systematic structural analysis on multiple oligomers of HsCPAP897-1338, using single-particle electron microscopy (EM) of negatively stained (NS) samples. Based on image classification into clearly different regular 3D maps (putatively corresponding to dimers and tetramers) and direct observation of individual images representing other complexes of HsCPAP897-1338 (i.e., putative flexible monomers and higher-order multimers), we report a dynamic oligomeric behavior of this protein, where different homo-oligomers coexist in variable proportions. We propose that dimerization of the putative homodimer forms a putative tetramer which could be the structural unit for the scaffold that either tethers the pericentriolar material to centrioles or promotes procentriole elongation. A coarse fitting of atomic models into the NS 3D maps at resolutions around 20 Å is performed only to complement our experimental data, allowing us to hypothesize on the oligomeric composition of the different complexes. In this way, the current EM work represents an initial step toward the structural characterization of different oligomers of CPAP, suggesting further insights to understand how this protein works, contributing to the elucidation of control mechanisms for centriole biogenesis.

5.
J Cell Biol ; 212(1): 63-75, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26711499

RESUMEN

Cellular genomes are highly vulnerable to perturbations to chromosomal DNA replication. Proliferating cell nuclear antigen (PCNA), the processivity factor for DNA replication, plays a central role as a platform for recruitment of genome surveillance and DNA repair factors to replication forks, allowing cells to mitigate the threats to genome stability posed by replication stress. We identify the E3 ubiquitin ligase TRAIP as a new factor at active and stressed replication forks that directly interacts with PCNA via a conserved PCNA-interacting peptide (PIP) box motif. We show that TRAIP promotes ATR-dependent checkpoint signaling in human cells by facilitating the generation of RPA-bound single-stranded DNA regions upon replication stress in a manner that critically requires its E3 ligase activity and is potentiated by the PIP box. Consequently, loss of TRAIP function leads to enhanced chromosomal instability and decreased cell survival after replication stress. These findings establish TRAIP as a PCNA-binding ubiquitin ligase with an important role in protecting genome integrity after obstacles to DNA replication.


Asunto(s)
Replicación del ADN/genética , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Células Tumorales Cultivadas
6.
Biochim Biophys Acta ; 1631(2): 136-46, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12633679

RESUMEN

A novel and relatively simple analytical method for the separation, characterisation and semi-quantitation of phospholipids (PLs) from extracts of complex biological samples has been developed. This methodology allows PL extracts from cells and tissues to be analysed by liquid chromatography (LC) coupled to electrospray ionisation mass spectrometry (ESI-MS). Complex mixtures of PLs were separated on a high-performance liquid chromatography (HPLC) system using 0.5% ammonium hydroxide in methanol/water/hexane/formate mixture with UV detection at 205 nm. Identification and structural characterisation of molecular species were carried out utilising ESI-MS and MS/MS in the negative ion mode. The abnormal accumulation of PLs (phospholipidosis) was induced in male Sprague-Dawley rats by administration of the cationic amphiphilic drug (CAD), amiodarone. Analysis of the PL profile of liver and lung tissues, lymphocytes and serum from treated rats was carried out using this analytical procedure (LC-ESI/MS/MS). Differences in PL profiles between treated and untreated animals were highlighted by principal component analysis (PCA). This led to the selection of a potential metabolic marker of phospholipidosis (PLD) identified as a lyso-bis-phosphatidic acid (LBPA) derivative, also known as bis(monoglycero)phosphate (BMP). This PL was absent in control animals but was present in quantifiable amounts in all samples from amiodarone-treated rats.


Asunto(s)
Amiodarona , Cromatografía Líquida de Alta Presión/métodos , Fosfolípidos/análisis , Tensoactivos , Animales , Biomarcadores/análisis , Hígado/metabolismo , Pulmón/metabolismo , Lisofosfolípidos/análisis , Lisofosfolípidos/sangre , Masculino , Espectrometría de Masas , Fosfolípidos/sangre , Ratas , Ratas Sprague-Dawley
7.
Nat Commun ; 6: 6439, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25762514

RESUMEN

The intrinsically disordered protein p15(PAF) regulates DNA replication and repair by binding to the proliferating cell nuclear antigen (PCNA) sliding clamp. We present the structure of the human p15(PAF)-PCNA complex. Crystallography and NMR show the central PCNA-interacting protein motif (PIP-box) of p15(PAF) tightly bound to the front-face of PCNA. In contrast to other PCNA-interacting proteins, p15(PAF) also contacts the inside of, and passes through, the PCNA ring. The disordered p15(PAF) termini emerge at opposite faces of the ring, but remain protected from 20S proteasomal degradation. Both free and PCNA-bound p15(PAF) binds DNA mainly through its histone-like N-terminal tail, while PCNA does not, and a model of the ternary complex with DNA inside the PCNA ring is consistent with electron micrographs. We propose that p15(PAF) acts as a flexible drag that regulates PCNA sliding along the DNA and facilitates the switch from replicative to translesion synthesis polymerase binding.


Asunto(s)
Proteínas Portadoras/química , Reparación del ADN , Replicación del ADN , ADN/química , Proteínas Intrínsecamente Desordenadas/química , Antígeno Nuclear de Célula en Proliferación/química , Secuencias de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , Proteínas de Unión al ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
8.
Nat Commun ; 5: 5072, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25262927

RESUMEN

chTOG is a conserved microtubule polymerase that catalyses the addition of tubulin dimers to promote microtubule growth. chTOG interacts with TACC3, a member of the transforming acidic coiled-coil (TACC) family. Here we analyse their association using the Xenopus homologues, XTACC3 (TACC3) and XMAP215 (chTOG), dissecting the mechanism by which their interaction promotes microtubule elongation during spindle assembly. Using SAXS, we show that the TACC domain (TD) is an elongated structure that mediates the interaction with the C terminus of XMAP215. Our data suggest that one TD and two XMAP215 molecules associate to form a four-helix coiled-coil complex. A hybrid methods approach was used to define the precise regions of the TACC heptad repeat and the XMAP215 C terminus required for assembly and functioning of the complex. We show that XTACC3 can induce the recruitment of larger amounts of XMAP215 by increasing its local concentration, thereby promoting efficient microtubule elongation during mitosis.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Calorimetría , Dicroismo Circular , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Huso Acromático/metabolismo , Resonancia por Plasmón de Superficie , Temperatura , Xenopus
9.
Curr Cancer Drug Targets ; 11(5): 600-12, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21486219

RESUMEN

The centrosome plays an essential role in cell cycle progression and cell polarity, organizing the microtubule network in interphase and mitosis. During cell division, the centrosome undergoes a series of structural and functional transitions and forms the two poles of the bipolar mitotic spindle. It is the microtubule cytoskeleton that is reorganized to form the two poles, ensuring accurate separation of the two daughter cells. To achieve this a large number of signalling proteins located at the centrosome, undergo precise time-dependent modulation. Protein kinases such as Aurora A, Polo and Neks, trigger and regulate events such as centrosome duplication, maturation and division. These enzymes are also involved in recruiting other proteins in cell division, thus they are likely to mediate the crosstalk between the cell and the centrosome cycle. In its function of microtubule organization, macromolecular complexes also have an important role. Tubulin polymerization confers the structural backbone to cell division, while other proteins may interact with it and/or mediate its recruitment to the centrosome. The interactions of these components regulate centrosome maturation and microtubule growth, essential mechanisms for cell division. Furthermore, dysregulation of this organelle, both at the level of signalling or as a structural element strongly correlates to aberrant proliferation, and the onset of tumours. Therefore, the centrosome represents an attractive target for anti-cancer therapy. Here we review the most important centrosomal proteins and their therapeutic potential. In addition, we summarize the current strategies of intervention and report the present stage of anti-cancer drug development targeting the centrosome.


Asunto(s)
Antineoplásicos/farmacología , Centrosoma/efectos de los fármacos , Centrosoma/fisiología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Animales , Ciclo Celular/efectos de los fármacos , Humanos , Neoplasias/metabolismo
10.
J Mol Biol ; 386(4): 1179-92, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19007792

RESUMEN

Jaagsiekte sheep retrovirus is a betaretrovirus and the causative agent of pulmonary adenocarcinoma, a transmissible lung tumour of sheep. Here we report the crystal structure of the capsid amino-terminal domain and examine the self-association properties of Jaagsiekte sheep retrovirus capsid. We find that the structure is remarkably similar to the amino-terminal domain of the alpharetrovirus, avian leukosis virus, revealing a previously undetected evolutionary similarity. Examination of capsid self-association suggests a mode of assembly not driven by the strong capsid carboxy-terminal domain interactions that characterise capsid assembly in the lentiviruses. Based on these data, we propose this structure provides a model for the capsid of betaretroviruses including the HML-2 family of endogenous human betaretroviruses.


Asunto(s)
Proteínas de la Cápside/química , Retrovirus Ovino Jaagsiekte/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones
11.
J Mol Biol ; 376(5): 1493-508, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18222469

RESUMEN

The Gag polyprotein is the major structural protein found in all classes of retroviruses. Interactions between Gag molecules control key events at several stages in the cycle of infection. In particular, the capsid (CA) domain of Gag mediates many of the protein-protein interactions that drive retrovirus assembly, maturation and disassembly. Moreover, in murine leukaemia virus (MLV), sequence variation in CA confers N and B tropism that determines susceptibility to the intracellular restriction factors Fv1n and Fv1b. We have determined the structure of the N-terminal domain (NtD) of CA from B-tropic MLV. A comparison of this structure with that of the NtD of CA from N-tropic MLV reveals that although the crystals belong to different space groups, CA monomers are packed with the same P6 hexagonal arrangement. Moreover, interhexamer crystal contacts between residues located at the periphery of the discs are conserved, indicating that switching of tropism does not result in large differences in the backbone conformation, nor does it alter the quaternary arrangement of the disc. We have also examined crystals of the N-tropic MLV CA containing both N- and C-terminal domains. In this case, the NtD hexamer is still present; however, the interhexamer spacing is increased and the conserved interhexamer contacts are absent. Investigation into the effects of mutation of residues that mediate interhexamer contacts reveals that amino acid substitutions at these positions cause severe defects in viral assembly, budding and Gag processing. Based on our crystal structures and mutational analysis, we propose that in MLV, interactions between the NtDs of CA are required for packing of Gag molecules in the early part of immature particle assembly. Moreover, we present a model where proteolytic cleavage at maturation results in migration of CA C-terminal domains into interstitial spaces between NtD hexamers. As a result, NtD-mediated interhexamer contacts present in the immature particle are displaced and the less densely packed lattice with increased hexamer-hexamer spacing characteristic of the viral core is produced.


Asunto(s)
Proteínas de la Cápside/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Cristalografía por Rayos X , Productos del Gen gag/química , Humanos , Virus de la Leucemia Murina , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Estructura Terciaria de Proteína , Alineación de Secuencia
12.
Biochemistry ; 47(7): 1947-56, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18217775

RESUMEN

A recombinant form of the prototypic diheme bacterial cytochrome c peroxidase (BCCP) from Pseudomonas aeruginosa (PsaCCP) has been expressed in Escherichia coli and purified to homogeneity. This material was used to carry out the first integrated biochemical, spectroscopic and structural investigation of the factors leading to reductive activation of this class of enzymes. A single, tightly bound, Ca2+ ion (K = 3 x 10(10) M-1) found at the domain interface of both the fully oxidized and mixed-valence forms of the enzyme is absolutely required for catalytic activity. Reduction of the electron-transferring (high-potential) heme in the presence of Ca2+ ions triggers substantial structural rearrangements around the active-site (low-potential) heme to allow substrate binding and catalysis. The enzyme also forms a mixed-valence state in the absence of Ca2+ ions, but a combination of electronic absorption, and EPR spectroscopies suggests that under these circumstances the low potential heme remains six-coordinate, unable to bind substrate and therefore catalytically inactive. Our observations strongly suggest that the two mixed-valence forms of native PsaCCP reported previously by Foote and colleagues (Foote, N., Peterson, J., Gadsby, P., Greenwood, C., and Thomson, A. (1985) Biochem. J. 230, 227-237) correspond to the Ca2+-loaded and -depleted forms of the enzyme.


Asunto(s)
Citocromo-c Peroxidasa/química , Pseudomonas aeruginosa/enzimología , Secuencia de Bases , Catálisis , Citocromo-c Peroxidasa/metabolismo , Cartilla de ADN , Espectrometría de Masas , Oxidación-Reducción , Conformación Proteica , Espectrofotometría Ultravioleta
13.
Virology ; 365(2): 302-14, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17493656

RESUMEN

In addition to the ability to bind the retroviral capsid protein, the retroviral restriction factors Fv1, Trim5alpha and Trim5-CypA share the common property of containing sequences that promote self-association. Otherwise Fv1 and Trim5alpha appear unrelated. Mutational analyses showed that restriction was invariably lost when changes designed to disrupt the sequences responsible for multimerization were introduced. A novel restriction protein could be obtained by substituting sequences from the self-associating domain of Fv1 for the Trim5 sequences in Trim5-CypA. Similarly, a fusion protein containing cyclophilin A joined to arfaptin2, a protein known to form extended dimers, was also shown to restrict HIV-1. Hence, multimerization of a capsid-binding domain could be the common minimum design feature for capsid-dependent retroviral restriction factors. However, not all domains that promote multimerization can substitute for the N-terminal domains of Fv1 and Trim5alpha. Moreover, only CypA can provide a capsid-binding site with different N-terminal domains. It is suggested that the spatial relationship between the multiple target binding sites may be important for restriction.


Asunto(s)
Antirretrovirales/farmacología , Proteínas Portadoras/genética , Ciclofilina A/genética , VIH-1/efectos de los fármacos , Proteínas/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Factores de Restricción Antivirales , Proteínas Portadoras/fisiología , Línea Celular , Ciclofilina A/fisiología , VIH-1/crecimiento & desarrollo , Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
14.
J Virol ; 80(16): 8225-35, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16873278

RESUMEN

The Fv1 protein is an endogenous factor in mice that confers resistance to infection by certain classes of murine leukemia virus, a phenomenon referred to as restriction. The mechanism of restriction is not understood, and the low endogenous level of Fv1 in cells has prevented any biochemical or biophysical analysis of the protein. We have now purified recombinant Fv1(n) protein from a baculovirus system and demonstrate that Fv1 exists in a multimeric form. Furthermore, we have mapped the position of two domains within the protein using limited proteolysis. Biophysical characterization of the N-terminal domain reveals that it comprises a highly helical and extended dimeric structure. Based on these biochemical and biophysical data, we propose a model for the arrangement of domains in Fv1 and suggest that dimerization of the N-terminal domain is necessary for Fv1 function to allow the protein to interact with multiple capsid protomers in retroviral cores.


Asunto(s)
Proteínas/química , Secuencia de Aminoácidos , Animales , Factores de Restricción Antivirales , Baculoviridae/genética , Proteínas Portadoras/química , Dicroismo Circular , Dimerización , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas Recombinantes/química , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA