Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Peripher Nerv Syst ; 27(1): 58-66, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35137510

RESUMEN

Charcot-Marie-Tooth disease Type 1A (CMT1A) is caused by duplication of the PMP22 gene and is the most common inherited peripheral neuropathy. Although CMT1A is a dysmyelinating peripheral neuropathy, secondary axon degeneration has been suggested to drive functional deficits in patients. Given that SARM1 knockout is a potent inhibitor of the programmed axon degeneration pathway, we asked whether SARM1 knockout rescues neuromuscular phenotypes in CMT1A model (C3-PMP) mice. CMT1A mice were bred with SARM1 knockout mice to generate CMT1A/SARM1-/- mice. A series of behavioral assays were employed to evaluate motor and sensorimotor function. Electrophysiological and histological studies of the tibial branch of the sciatic nerve were performed. Additionally, gastrocnemius and soleus muscle morphology were evaluated histologically. Although clear behavioral and electrophysiological deficits were observed in CMT1A model mice, genetic deletion of SARM1 conferred no significant improvement. Nerve morphometry revealed predominantly myelin deficits in CMT1A model mice and SARM1 knockout yielded no improvement in all nerve morphometry measures. Similarly, muscle morphometry deficits in CMT1A model mice were not improved by SARM1 knockout. Our findings demonstrate that programmed axon degeneration pathway inhibition does not provide therapeutic benefit in C3-PMP CMT1A model mice. Our results indicate that the clinical phenotypes observed in CMT1A mice are likely caused primarily by prolonged dysmyelination, motivate further investigation into mechanisms of dysmyelination in these mice and necessitate the development of improved CMT1A rodent models that recapitulate the secondary axon degeneration observed in patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedades Desmielinizantes , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/genética , Enfermedades Desmielinizantes/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Vaina de Mielina/patología , Fenotipo
2.
J Neurosci ; 36(45): 11418-11426, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27911744

RESUMEN

RNA-binding proteins (RBPs) acting at various steps in the post-transcriptional regulation of gene expression play crucial roles in neuronal development and synaptic plasticity. Genetic mutations affecting several RBPs and associated factors lead to diverse neurological symptoms, as characterized by neurodevelopmental and neuropsychiatric disorders, neuromuscular and neurodegenerative diseases, and can often be multisystemic diseases. We will highlight the physiological roles of a few specific proteins in molecular mechanisms of cytoplasmic mRNA regulation, and how these processes are dysregulated in genetic disease. Recent advances in computational biology and genomewide analysis, integrated with diverse experimental approaches and model systems, have provided new insights into conserved mechanisms and the shared pathobiology of mRNA dysregulation in disease. Progress has been made to understand the pathobiology of disease mechanisms for myotonic dystrophy, spinal muscular atrophy, and fragile X syndrome, with broader implications for other RBP-associated genetic neurological diseases. This gained knowledge of underlying basic mechanisms has paved the way to the development of therapeutic strategies targeting disease mechanisms.


Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Enfermedades del Sistema Nervioso/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Animales , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Humanos
3.
iScience ; 27(6): 109855, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770143

RESUMEN

Establishing robust models of human myelinating Schwann cells is critical for studying peripheral nerve injury and disease. Stem cell differentiation has emerged as a key human cell model and disease motivating development of Schwann cell differentiation protocols. Human embryonic stem cells (hESCs) are considered the ideal pluripotent cell but ethical concerns regarding their use have propelled the popularity of human induced pluripotent stem cells (hiPSCs). Given that the equivalence of hESCs and hiPSCs remains controversial, we sought to compare the molecular and functional equivalence of hESC- and hiPSC-derived Schwann cells generated with our previously reported protocol. We identified only modest transcriptome differences by RNA sequencing and insignificant proteome differences by antibody array. Additionally, both cell types comparably improved nerve regeneration and function in a chronic denervation and regeneration animal model. Our findings demonstrate that Schwann cells derived from hESCs and hiPSCs with our protocol are molecularly comparable and functionally equivalent.

4.
Nat Commun ; 14(1): 3427, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296096

RESUMEN

RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.


Asunto(s)
Cinesinas , Distrofia Miotónica , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Empalme Alternativo , ARN/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Neurosci Lett ; 744: 135595, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33359733

RESUMEN

Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.


Asunto(s)
Axones/metabolismo , Enfermedades Desmielinizantes/metabolismo , Degeneración Nerviosa/metabolismo , Polineuropatías/metabolismo , Animales , Artrogriposis/metabolismo , Artrogriposis/patología , Axones/patología , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedades Desmielinizantes/patología , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Neuropatía Hereditaria Motora y Sensorial/patología , Humanos , Degeneración Nerviosa/patología , Polineuropatías/patología , Células de Schwann/metabolismo , Células de Schwann/patología
6.
Brain Res ; 1727: 146539, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689415

RESUMEN

The programmed axon degeneration pathway has emerged as an important process contributing to the pathogenesis of several neurological diseases. The most crucial events in this pathway include activation of the central executioner SARM1 and NAD+ depletion, which leads to an energetic failure and ultimately axon destruction. Given the prevalence of this pathway, it is not surprising that inhibitory therapies are currently being developed in order to treat multiple neurological diseases with the same therapy. Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of neurological diseases that may also benefit from this therapeutic approach. To evaluate the appropriateness of this strategy, the contribution of the programmed axon degeneration pathway to the pathogenesis of different CMT subtypes is being actively investigated. The subtypes CMT1A, CMT1B and CMT2D are the first to have been examined. Based on the results from these studies and advances in developing therapies to block the programmed axon degeneration pathway, promising therapeutics for CMT are now on the horizon.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/terapia , Terapia Genética , Terapia Molecular Dirigida , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/genética , Axones/patología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Nicotinamida-Nucleótido Adenililtransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa/genética
7.
PLoS One ; 14(5): e0217275, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31112584

RESUMEN

Fragile X syndrome, the most common inherited form of intellectual disability, is caused by the CGG trinucleotide expansion in the 5'-untranslated region of the Fmr1 gene on the X chromosome, which silences the expression of the fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA, which encodes for the postsynaptic density protein 95, and together with microRNA-125a to mediate the reversible inhibition of the PSD-95 mRNA translation in neurons. The miR-125a binding site within the PSD-95 mRNA 3'-untranslated region (UTR) is embedded in a G-rich region bound by FMRP, which we have previously demonstrated folds into two parallel G-quadruplex structures. The FMRP regulation of PSD-95 mRNA translation is complex, being mediated by its phosphorylation. While the requirement for FMRP in the regulation of PSD-95 mRNA translation is clearly established, the exact mechanism by which this is achieved is not known. In this study, we have shown that both unphosphorylated FMRP and its phosphomimic FMRP S500D bind to the PSD-95 mRNA G-quadruplexes with high affinity, whereas only FMRP S500D binds to miR-125a. These results point towards a mechanism by which, depending on its phosphorylation status, FMRP acts as a switch that potentially controls the stability of the complex formed by the miR-125a-guided RNA induced silencing complex (RISC) and PSD-95 mRNA.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/biosíntesis , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Homólogo 4 de la Proteína Discs Large/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , G-Cuádruplex , Humanos , MicroARNs/química , MicroARNs/genética , Modelos Moleculares , Fosforilación , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Mol Biosyst ; 13(8): 1448-1457, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28612854

RESUMEN

G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.


Asunto(s)
Regiones no Traducidas 5' , Química Encefálica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , G-Cuádruplex , Factores de Empalme de ARN/química , Proteínas del Complejo SMN/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Encéfalo/metabolismo , Encéfalo/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Termodinámica , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA