Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pediatr Res ; 95(4): 931-940, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38066248

RESUMEN

BACKGROUND: Lung inflammation and impaired alveolarization precede bronchopulmonary dysplasia (BPD). Glucocorticoids are anti-inflammatory and reduce ventilator requirements in preterm infants. However, high-dose glucocorticoids inhibit alveolarization. The effect of glucocorticoids on lung function and structure in preterm newborns exposed to antenatal inflammation is unknown. We hypothesise that postnatal low-dose dexamethasone reduces ventilator requirements, prevents inflammation and BPD-like lung pathology, following antenatal inflammation. METHODS: Pregnant ewes received intra-amniotic LPS (E.coli, 4 mg/mL) or saline at 126 days gestation; preterm lambs were delivered 48 h later. Lambs were randomised to receive either tapered intravenous dexamethasone (LPS/Dex, n = 9) or saline (LPS/Sal, n = 10; Sal/Sal, n = 9) commencing <3 h after birth. Respiratory support was gradually de-escalated, using a standardised protocol aimed at weaning from ventilation towards unassisted respiration. Tissues were collected at day 7. RESULTS: Lung morphology and mRNA levels for inflammatory mediators were measured. Respiratory support requirements were not different between groups. Histological analyses revealed higher tissue content and unchanged alveolarization in LPS/Sal compared to other groups. LPS/Dex lambs exhibited decreased markers of pulmonary inflammation compared to LPS/Sal. CONCLUSION: Tapered low-dose dexamethasone reduces the impact of antenatal LPS on ventilation requirements throughout the first week of life and reduces inflammation and pathological thickening of the preterm lung IMPACT: We are the first to investigate the combination of antenatal inflammation and postnatal dexamethasone therapy in a pragmatic study design, akin to contemporary neonatal care. We show that antenatal inflammation with postnatal dexamethasone therapy does not reduce ventilator requirements, but has beneficial maturational impacts on the lungs of preterm lambs at 7 days of life. Appropriate tapered postnatal dexamethasone dosing should be explored for extuabtion of oxygen-dependant neonates.


Asunto(s)
Displasia Broncopulmonar , Lipopolisacáridos , Humanos , Recién Nacido , Lactante , Animales , Ovinos , Femenino , Embarazo , Recien Nacido Prematuro , Antiinflamatorios/farmacología , Glucocorticoides/farmacología , Pulmón , Inflamación , Displasia Broncopulmonar/prevención & control , Esteroides , Oveja Doméstica , Dexametasona/farmacología
2.
Pediatr Res ; 92(6): 1555-1565, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35277596

RESUMEN

BACKGROUND: Antenatal conditions that are linked with preterm birth, such as intrauterine inflammation, can influence fetal cardiac development thereby rendering the heart more vulnerable to the effects of prematurity. We aimed to investigate the effect of intrauterine inflammation, consequent to lipopolysaccharide exposure, on postnatal cardiac growth and maturation in preterm lambs. METHODS: Preterm lambs (~129 days gestational age) exposed antenatally to lipopolysaccharide or saline were managed according to contemporary neonatal care and studied at postnatal day 7. Age-matched fetal controls were studied at ~136 days gestational age. Cardiac tissue was sampled for molecular analyses and assessment of cardiac structure and cardiomyocyte maturation. RESULTS: Lambs delivered preterm showed distinct ventricular differences in cardiomyocyte growth and maturation trajectories as well as remodeling of the left ventricular myocardium compared to fetal controls. Antenatal exposure to lipopolysaccharide resulted in further collagen deposition in the left ventricle and a greater presence of immune cells in the preterm heart. CONCLUSIONS: Adverse impacts of preterm birth on cardiac structure and cardiomyocyte growth kinetics within the first week of postnatal life are exacerbated by intrauterine inflammation. The maladaptive remodeling of the cardiac structure and perturbed cardiomyocyte growth likely contribute to the increased vulnerability to cardiac dysfunction following preterm birth. IMPACT: Preterm birth induces maladaptive cardiac remodeling and adversely impacts cardiomyocyte growth kinetics within the first week of life in sheep. These effects of prematurity on the heart are exacerbated when preterm birth is preceded by exposure to intrauterine inflammation, a common antecedent of preterm birth. Inflammatory injury to the fetal heart coupled with preterm birth consequently alters neonatal cardiac growth and maturation and thus, may potentially influence long-term cardiac function and health.


Asunto(s)
Nacimiento Prematuro , Recién Nacido , Humanos , Animales , Ovinos , Embarazo , Femenino , Lipopolisacáridos/farmacología , Miocardio , Inflamación , Miocitos Cardíacos , Corazón Fetal
3.
J Neuroinflammation ; 18(1): 189, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465372

RESUMEN

BACKGROUND: Increased systemic and tissue levels of interleukin (IL)-1ß are associated with greater risk of impaired neurodevelopment after birth. In this study, we tested the hypothesis that systemic IL-1 receptor antagonist (Ra) administration would attenuate brain inflammation and injury in near-term fetal sheep exposed to lipopolysaccharide (LPS). METHODS: Chronically instrumented near-term fetal sheep at 0.85 of gestation were randomly assigned to saline infusion (control, n = 9), repeated LPS infusions (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng, n = 8) or repeated LPS plus IL-1Ra infusions (13 mg/kg infused over 4 h) started 1 h after each LPS infusion (n = 9). Sheep were euthanized 4 days after starting infusions for histology. RESULTS: LPS infusions increased circulating cytokines and were associated with electroencephalogram (EEG) suppression with transiently reduced mean arterial blood pressure, and increased carotid artery perfusion and fetal heart rate (P < 0.05 vs. control for all). In the periventricular and intragyral white matter, LPS-exposure increased IL-1ß immunoreactivity, numbers of caspase 3+ cells and microglia, reduced astrocyte and olig-2+ oligodendrocyte survival but did not change numbers of mature CC1+ oligodendrocytes, myelin expression or numbers of neurons in the cortex and subcortical regions. IL-1Ra infusions reduced circulating cytokines and improved recovery of EEG activity and carotid artery perfusion. Histologically, IL-1Ra reduced microgliosis, IL-1ß expression and caspase-3+ cells, and improved olig-2+ oligodendrocyte survival. CONCLUSION: IL-1Ra improved EEG activity and markedly attenuated systemic inflammation, microgliosis and oligodendrocyte loss following LPS exposure in near-term fetal sheep. Further studies examining the long-term effects on brain maturation are now needed.


Asunto(s)
Encéfalo/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Lipopolisacáridos/farmacología , Oligodendroglía/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encefalitis/metabolismo , Encefalitis/patología , Femenino , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Oligodendroglía/metabolismo , Oligodendroglía/patología , Embarazo , Ovinos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
4.
Clin Sci (Lond) ; 135(15): 1859-1871, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34296277

RESUMEN

BACKGROUND AND AIMS: Preterm birth is associated with increased risk of cardiovascular disease (CVD). This may reflect a legacy of inflammatory exposures such as chorioamnionitis which complicate pregnancies delivering preterm, or recurrent early-life infections, which are common in preterm infants. We previously reported that experimental chorioamnionitis followed by postnatal inflammation has additive and deleterious effects on atherosclerosis in ApoE-/- mice. Here, we aimed to investigate whether innate immune training is a contributory inflammatory mechanism in this murine model of atherosclerosis. METHODS: Bone marrow-derived macrophages and peritoneal macrophages were isolated from 13-week-old ApoE-/- mice, previously exposed to prenatal intra-amniotic (experimental choriomanionitis) and/or repeated postnatal (peritoneal) lipopolysaccharide (LPS). Innate immune responses were assessed by cytokine responses following ex vivo stimulation with toll-like receptor (TLR) agonists (LPS, Pam3Cys) and RPMI for 24-h. Bone marrow progenitor populations were studied using flow cytometric analysis. RESULTS: Following postnatal LPS exposure, bone marrow-derived macrophages and peritoneal macrophages produced more pro-inflammatory cytokines following TLR stimulation than those from saline-treated controls, characteristic of a trained phenotype. Cytokine production ex vivo correlated with atherosclerosis severity in vivo. Prenatal LPS did not affect cytokine production capacity. Combined prenatal and postnatal LPS exposure was associated with a reduction in populations of myeloid progenitor cells in the bone marrow. CONCLUSIONS: Postnatal inflammation results in a trained phenotype in atherosclerosis-prone mice that is not enhanced by prenatal inflammation. If analogous mechanisms occur in humans, then there may be novel early life opportunities to reduce CVD risk in infants with early life infections.


Asunto(s)
Aterosclerosis/inmunología , Corioamnionitis/inmunología , Inmunidad Innata , Macrófagos Peritoneales/inmunología , Células Progenitoras Mieloides/inmunología , Peritonitis/inmunología , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Cultivadas , Corioamnionitis/inducido químicamente , Corioamnionitis/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Macrófagos Peritoneales/metabolismo , Ratones Noqueados para ApoE , Células Progenitoras Mieloides/metabolismo , Peritonitis/inducido químicamente , Peritonitis/metabolismo , Fenotipo , Embarazo
5.
Pediatr Res ; 88(1): 27-37, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32120374

RESUMEN

BACKGROUND: Mechanical ventilation of preterm neonates is associated with neuroinflammation and an increased risk of adverse neurological outcomes. Human amnion epithelial cells (hAECs) have anti-inflammatory and regenerative properties. We aimed to determine if intravenous administration of hAECs to preterm lambs would reduce neuroinflammation and injury at 2 days of age. METHODS: Preterm lambs were delivered by cesarean section at 128-130 days' gestation (term is ~147 days) and either ventilated for 48 h or humanely killed at birth. Lambs received 3 mL surfactant (Curosurf) via endotracheal tube prior to delivery (either with or without 90 × 106 hAECs) and 3 mL intravenous phosphate-buffered saline (with or without 90 × 106 hAECs, consistent with intratracheal treatment) after birth. RESULTS: Ventilation increased microglial activation, total oligodendrocyte cell number, cell proliferation and blood-brain barrier permeability (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control), but did not affect numbers of immature and mature oligodendrocytes. Ventilation reduced astrocyte and neuron survival (P < 0.05, PBS + ventilation and hAEC + ventilation vs. control). hAEC administration did not alter markers of neuroinflammation or injury within the white or gray matter. CONCLUSIONS: Mechanical ventilation for 48 h upregulated markers of neuroinflammation and injury in preterm lambs. Administration of hAECs did not affect markers of neuroinflammation or injury. IMPACT: Mechanical ventilation of preterm lambs for 48 h, in a manner consistent with contemporary neonatal intensive care, causes neuroinflammation, neuronal loss and pathological changes in oligodendrocyte and astrocyte survival consistent with evolving neonatal brain injury.Intravenous administration of hAECs immediately after birth did not affect neonatal cardiorespiratory function and markers of neuroinflammation or injury.Reassuringly, our findings in a translational large animal model demonstrate that intravenous hAEC administration to the preterm neonate is safe.Considering that hAECs are being used in phase 1 trials for the treatment of BPD in preterm infants, with future trials planned for neonatal neuroprotection, we believe these observations are highly relevant.


Asunto(s)
Amnios/metabolismo , Encéfalo/patología , Trasplante de Células/métodos , Células Epiteliales/metabolismo , Inflamación , Animales , Animales Recién Nacidos , Barrera Hematoencefálica , Proliferación Celular , Femenino , Sustancia Gris/patología , Humanos , Infusiones Intravenosas , Masculino , Microglía/metabolismo , Oligodendroglía/metabolismo , Permeabilidad , Regeneración , Respiración Artificial , Ovinos , Sustancia Blanca/patología
6.
Pediatr Radiol ; 50(1): 142-145, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31440883

RESUMEN

X-linked stapes gusher syndrome is a genetic form of deafness with distinct radiographic features on temporal bone CT. Hypothalamic hamartoma is a congenital glioneuronal anomaly of the hypothalamus. We report a potential association between these two rare anomalies that, to our knowledge, has not been reported. Two brothers presented with sensorineural hearing loss and almost identical inner ear and hypothalamic abnormalities, consistent with a diagnosis of X-linked stapes gusher syndrome and hypothalamic hamartoma. Genetic testing revealed identical mutations in the POU3F4 gene associated with X-linked stapes gusher syndrome. Furthermore, multiple vestibular diverticula were seen in both brothers, which have also not been reported with X-linked stapes gusher syndrome. This case suggests that POU3F4 mediated X-linked stapes gusher syndrome may also lead to multiple vestibular diverticula and hypothalamic hamartoma and, therefore, brain magnetic resonance imaging (MRI) could be considered in patients presenting with these inner ear findings.


Asunto(s)
Hamartoma/diagnóstico por imagen , Hamartoma/genética , Pérdida Auditiva Sensorineural/genética , Enfermedades Hipotalámicas/diagnóstico por imagen , Enfermedades Hipotalámicas/genética , Enfermedades del Laberinto/diagnóstico por imagen , Enfermedades del Laberinto/genética , Factores del Dominio POU/genética , Preescolar , Divertículo/complicaciones , Divertículo/diagnóstico por imagen , Divertículo/genética , Oído Interno/diagnóstico por imagen , Hamartoma/complicaciones , Pérdida Auditiva Sensorineural/complicaciones , Humanos , Enfermedades Hipotalámicas/complicaciones , Enfermedades del Laberinto/complicaciones , Imagen por Resonancia Magnética/métodos , Masculino , Estribo/diagnóstico por imagen , Síndrome , Tomografía Computarizada por Rayos X/métodos
7.
J Physiol ; 597(16): 4251-4262, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31192454

RESUMEN

KEY POINTS: Experimental maternal allergic asthma in sheep provides an experimental model in which to test impacts on progeny. Fetuses from allergic asthmatic ewes had fewer surfactant-producing cells in lungs. A greater proportion of lymphocytes from thymus were CD44 positive in fetuses from allergic asthmatic ewes than in controls. These changes to fetal development might contribute to poor neonatal lung function and increased risk of allergy seen in offspring of pregnancies complicated by asthma. ABSTRACT: Asthma is prevalent in pregnancy and increases the risk of disease in offspring, including neonatal respiratory distress and childhood asthma and allergy, but the mechanisms are not understood. We hypothesized that fetal lung structure and immune phenotype in late gestation fetal sheep would be impaired in our sheep model of maternal allergic asthma during pregnancy. Singleton-bearing ewes were either sensitized before pregnancy to house dust mite (HDM, allergic, n = 7) or were non-allergic (control, n = 5). The ewes were subsequently subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Tissues were collected at 140 ± 1 days gestational age (term, ∼147 days). The density of type II alveolar epithelial cells (surfactant protein C-immunostained) in the lungs was 30% lower in fetuses from allergic ewes than in controls (P < 0.001), but tissue-to-air space ratio and numbers of leucocytes and macrophages were not different between groups. The proportion of CD44+ lymphocytes in the fetal thymus was 3.5-fold higher in fetuses from allergic ewes than in control ewes (P = 0.043). Fewer surfactant-producing type II alveolar epithelial cells may contribute to the increased risk of neonatal respiratory distress in infants of asthmatic mothers, suggesting that interventions to promote lung maturation could improve their neonatal outcomes. If the elevated lymphocyte expression of CD44 persists postnatally, this would confer greater susceptibility to allergic diseases in progeny of asthmatic mothers, consistent with observations in humans. Further experiments are needed to evaluate postnatal phenotypes of progeny and investigate potential interventions.


Asunto(s)
Asma , Desarrollo Fetal/inmunología , Hipersensibilidad , Pulmón/embriología , Pulmón/inmunología , Ovinos/inmunología , Líquido Amniótico/química , Animales , Anticuerpos/sangre , Pruebas de Provocación Bronquial/métodos , Citocinas/química , Citocinas/metabolismo , Femenino , Hidrocortisona/sangre , Embarazo
8.
Clin Sci (Lond) ; 133(10): 1185-1196, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31088858

RESUMEN

Atherosclerosis is a chronic inflammatory disease that has its origins in early life. Postnatal inflammation exacerbates atherosclerosis, but the possible effect of intrauterine inflammation is largely unexplored. Exposure to inflammation in utero is common, especially in infants born preterm, who have increased cardiovascular risk in adulthood. We hypothesised that exposure to inflammation before birth would accelerate the development of atherosclerosis, with the most severe atherosclerosis following exposure to both pre- and postnatal inflammation. Here we studied the effect of prenatal and postnatal inflammation on the development of atherosclerosis by combining established techniques for modelling histological chorioamnionitis and atherosclerosis using apolipoprotein E (ApoE) knockout mice. A single intra-amniotic (IA) injection of lipopolysaccharide (LPS) caused intrauterine inflammation, and increased atherosclerosis at 13 weeks of postnatal age. In mice exposed to postnatal LPS, chorioamnionitis modulated subsequent responses; atherosclerotic lesion size, number and severity were greatest for mice exposed to both intrauterine and postnatal inflammation, with a concomitant decrease in collagen content and increased inflammation of the atherosclerotic plaque. In conclusion, pre- and postnatal inflammation have additive and deleterious effects on the development of atherosclerosis in ApoE knockout mice. The findings are particularly relevant to preterm human infants, whose gestations are frequently complicated by chorioamnionitis and who are particularly susceptible to repeated postnatal infections. Human and mechanistic studies are warranted to guide preventative strategies.


Asunto(s)
Aterosclerosis/etiología , Corioamnionitis , Inflamación/complicaciones , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Masculino , Ratones Noqueados para ApoE , Embarazo
9.
Pediatr Res ; 86(2): 165-173, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30858474

RESUMEN

BACKGROUND: Chorioamnionitis and fetal inflammation are principal causes of neuropathology detected after birth, particularly in very preterm infants. Preclinical studies show that umbilical cord blood (UCB) cells are neuroprotective, but it is uncertain if allogeneic UCB cells are a feasible early intervention for preterm infants. In contrast, mesenchymal stem cells (MSCs) are more readily accessible and show strong anti-inflammatory benefits. We aimed to compare the neuroprotective benefits of UCB versus MSCs in a large animal model of inflammation-induced preterm brain injury. We hypothesized that MSCs would afford greater neuroprotection. METHODS: Chronically instrumented fetal sheep at 0.65 gestation received intravenous lipopolysaccharide (150 ng; 055:B5, n = 8) over 3 consecutive days; or saline for controls (n = 8). Cell-treated animals received 108 UCB mononuclear cells (n = 7) or 107 umbilical cord MSCs (n = 8), intravenously, 6 h after the final lipopolysaccharide dose. Seven days later, cerebrospinal fluid and brain tissue was collected for analysis. RESULTS: Lipopolysaccharide induced neuroinflammation and apoptosis, and reduced the number of mature oligodendrocytes. MSCs reduced astrogliosis, but UCB did not have the same effect. UCB significantly decreased cerebral apoptosis and protected mature myelinating oligodendrocytes, but MSCs did not. CONCLUSION: UCB appears to better protect white matter development in the preterm brain in response to inflammation-induced brain injury in fetal sheep.


Asunto(s)
Astrocitos/patología , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/terapia , Sangre Fetal/citología , Gliosis/fisiopatología , Inflamación/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Animales Recién Nacidos , Apoptosis , Muerte Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Leucocitos Mononucleares/citología , Lipopolisacáridos , Masculino , Neuroprotección , Oligodendroglía/citología , Ovinos , Sustancia Blanca/patología
11.
Dev Neurosci ; 40(3): 258-270, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30179864

RESUMEN

BACKGROUND: Infants born preterm following exposure to in utero inflammation/chorioamnionitis are at high risk of brain injury and life-long neurological deficits. In this study, we assessed the efficacy of early intervention umbilical cord blood (UCB) cell therapy in a large animal model of preterm brain inflammation and injury. We hypothesised that UCB treatment would be neuroprotective for the preterm brain following subclinical fetal inflammation. METHODS: Chronically instrumented fetal sheep at 0.65 gestation were administered lipopolysaccharide (LPS, 150 ng, 055:B5) intravenously over 3 consecutive days, followed by 100 million human UCB mononuclear cells 6 h after the final LPS dose. Controls were administered saline instead of LPS and cells. Ten days after the first LPS dose, the fetal brain and cerebrospinal fluid were collected for analysis of subcortical and periventricular white matter injury and inflammation. RESULTS: LPS administration increased microglial aggregate size, neutrophil recruitment, astrogliosis and cell death compared with controls. LPS also reduced total oligodendrocyte count and decreased mature myelinating oligodendrocytes. UCB cell therapy attenuated cell death and inflammation, and recovered total and mature oligodendrocytes, compared with LPS. CONCLUSIONS: UCB cell treatment following inflammation reduces preterm white matter brain injury, likely mediated via anti-inflammatory actions.


Asunto(s)
Lesiones Encefálicas/terapia , Encefalitis/terapia , Sangre Fetal/citología , Lipopolisacáridos/farmacología , Animales , Corioamnionitis/terapia , Modelos Animales de Enfermedad , Femenino , Feto/citología , Humanos , Microglía/citología , Embarazo , Ovinos , Sustancia Blanca/efectos de los fármacos
12.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1123-R1153, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30325659

RESUMEN

Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.


Asunto(s)
Feto/metabolismo , Placenta/metabolismo , Resultado del Embarazo , Ovinos/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Intercambio Materno-Fetal/fisiología , Embarazo , Preñez
14.
Paediatr Respir Rev ; 23: 72-77, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27856214

RESUMEN

Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS.


Asunto(s)
Corioamnionitis/metabolismo , Pulmón , Neumonía , Síndrome de Dificultad Respiratoria del Recién Nacido , Animales , Descubrimiento de Drogas , Femenino , Edad Gestacional , Glucocorticoides/metabolismo , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Pulmón/fisiopatología , Neumonía/complicaciones , Neumonía/metabolismo , Neumonía/fisiopatología , Embarazo , Nacimiento Prematuro/etiología , Nacimiento Prematuro/metabolismo , Nacimiento Prematuro/fisiopatología , Prostaglandinas/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/etiología , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatología , Síndrome de Dificultad Respiratoria del Recién Nacido/prevención & control
15.
PLoS Genet ; 10(3): e1004258, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24676022

RESUMEN

Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.


Asunto(s)
Anomalías Múltiples/genética , Actinas/genética , Colon/anomalías , Heterocigoto , Seudoobstrucción Intestinal/genética , Mutación/genética , Vejiga Urinaria/anomalías , Anomalías Múltiples/patología , Adolescente , Adulto , Niño , Preescolar , Colon/patología , Exoma , Femenino , Humanos , Seudoobstrucción Intestinal/patología , Masculino , Músculo Liso/metabolismo , Vejiga Urinaria/patología
16.
J Physiol ; 594(5): 1437-49, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26332509

RESUMEN

Inadvertently injurious ventilation of preterm neonates in the delivery room can cause cerebral white matter (WM) inflammation and injury. We investigated the impact of an early high dose of recombinant human erythropoietin (EPO) on ventilation-induced WM changes in preterm lambs. Injurious ventilation, targeting a V(T) of 15 ml kg(-1) with no positive end-expiratory pressure, was initiated for 15 min in preterm lambs (0.85 gestation). Conventional ventilation was continued for a further 105 min. Lambs received either 5000 IU kg(-1) of EPO (EPREX®; Vent+EPO; n = 6) or vehicle (Vent; n = 8) via an umbilical vein at 4 ± 2 min. Markers of WM injury and inflammation were assessed using quantitative real-time PCR (qPCR) and immunohistochemistry and compared to a group of unventilated controls (UVC; n = 4). In Vent+EPO lambs compared to Vent lambs: (i) interleukin (IL)-1ß and IL-6 mRNA levels in the periventricular WM and IL-8 mRNA levels in the subcortical WM were higher (P < 0.05 for all); (ii) the density of microglia within the aggregations was not different in the periventricular WM and was lower in the subcortical WM (P = 0.001); (iii) the density of astrocytes was lower in the subcortical WM (P = 0.002); (iv) occludin and claudin-1 mRNA levels were higher in the periventricular WM (P < 0.02 for all) and (vi) the number of blood vessels with protein extravasation was lower (P < 0.05). Recombinant human EPO had variable regional effects within the WM when administered during injurious ventilation. The adverse short-term outcomes discourage the use of early high dose EPO administration in preterm ventilated babies.


Asunto(s)
Eritropoyetina/uso terapéutico , Hipoxia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Respiración Artificial/efectos adversos , Sustancia Blanca/efectos de los fármacos , Animales , Astrocitos/metabolismo , Astrocitos/patología , Eritropoyetina/administración & dosificación , Eritropoyetina/farmacología , Femenino , Hipoxia Encefálica/etiología , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Embarazo , Ventilación Pulmonar , Ovinos , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
17.
J Physiol ; 594(5): 1311-25, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26235954

RESUMEN

Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.


Asunto(s)
Asma/fisiopatología , Modelos Animales de Enfermedad , Complicaciones del Embarazo/fisiopatología , Animales , Antígenos Dermatofagoides/inmunología , Antígenos Dermatofagoides/toxicidad , Asma/etiología , Femenino , Embarazo , Complicaciones del Embarazo/etiología , Ovinos
18.
Eur J Neurosci ; 43(6): 811-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26750170

RESUMEN

A potentially vital pathway in the processing of spatial memory is the pathway from ventral hippocampus to medial prefrontal cortex (vHPC-mPFC). To assess long-term potentiation (LTP) induction and maintenance across days in this pathway, the effects of several induction paradigms were compared in awake, freely moving rats. Two different high-frequency stimulation (HFS) protocols generated LTP lasting no longer than 1 week. However, after delivering HFS on three consecutive days, LTP lasted an average of 20 days, due mainly to the greater initial induction. Thus the pathway does not require extensive multi-day stimulation to induce LTP, as for other intra-neocortical pathways, but also it does not exhibit the extremely long-lasting and stable LTP previously observed in area CA1 and the dentate gyrus. By using bilaterally placed stimulating and recording electrodes, we found that HFS in one vHPC generated responses and LTP in the contralateral mPFC, even when the ipsilateral mPFC was inactivated by CNQX. We attribute this crossed response to a polysynaptic pathway from the vHPC to the contralateral mPFC. Finally, we found that repeated overnight exposure to an enriched environment also potentiated the vHPC-mPFC response, but this too was a transient effect lasting < 9 days, declining to baseline even before the enriched environment treatment was completed. Overall, these findings are consistent with the view that potentiation of vHPC-mPFC pathway may play a key role in promoting the hippocampus-mPFC interplay that, over days, leads to long-term storage in the frontal cortex of memories that are independent of the hippocampus.


Asunto(s)
Región CA1 Hipocampal/fisiología , Giro Dentado/fisiología , Potenciación a Largo Plazo , Corteza Prefrontal/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología , Vigilia
19.
Genet Med ; 18(11): 1143-1150, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26986877

RESUMEN

PURPOSE: Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) is an autosomal-dominant disorder characterized by optic atrophy and intellectual disability caused by loss-of-function mutations in NR2F1. We report 20 new individuals with BBSOAS, exploring the spectrum of clinical phenotypes and assessing potential genotype-phenotype correlations. METHODS: Clinical features of individuals with pathogenic NR2F1 variants were evaluated by review of medical records. The functional relevance of coding nonsynonymous NR2F1 variants was assessed with a luciferase assay measuring the impact on transcriptional activity. The effects of two start codon variants on protein expression were evaluated by western blot analysis. RESULTS: We recruited 20 individuals with novel pathogenic NR2F1 variants (seven missense variants, five translation initiation variants, two frameshifting insertions/deletions, one nonframeshifting insertion/deletion, and five whole-gene deletions). All the missense variants were found to impair transcriptional activity. In addition to visual and cognitive deficits, individuals with BBSOAS manifested hypotonia (75%), seizures (40%), autism spectrum disorder (35%), oromotor dysfunction (60%), thinning of the corpus callosum (53%), and hearing defects (20%). CONCLUSION: BBSOAS encompasses a broad range of clinical phenotypes. Functional studies help determine the severity of novel NR2F1 variants. Some genotype-phenotype correlations seem to exist, with missense mutations in the DNA-binding domain causing the most severe phenotypes.Genet Med 18 11, 1143-1150.


Asunto(s)
Trastorno del Espectro Autista/genética , Factor de Transcripción COUP I/genética , Estudios de Asociación Genética , Atrofia Óptica/genética , Adolescente , Adulto , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Femenino , Eliminación de Gen , Humanos , Masculino , Mutación Missense , Atrofia Óptica/complicaciones , Atrofia Óptica/fisiopatología , Linaje
20.
Soc Stud Sci ; 46(4): 559-582, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28948872

RESUMEN

This article takes an historical perspective on current attempts to 'open up' established, centralized systems of urban infrastructure to alternative technologies designed to minimize resource use and environmental pollution. The process of introducing alternative technologies into, or alongside, centralized urban infrastructures is not a novel phenomenon, as is often assumed. The physical and institutional entrenchment of large technical systems for urban energy, water or sanitation services in industrialized countries in the late 19th and early 20th centuries did not close the door completely on alternatives. I investigate a number of alternative technologies used in Berlin in the interwar period (1920-1939), in order to reveal the rationales developed around each technology and the ways in which each emerged, disappeared and re-emerged or survived across highly diverse political regimes. The selection of cases is guided by the desire to illustrate three different phenomena of alternative technology diffusion (and exclusion) experienced in Berlin: (1) technologies promoted by early pioneers and discarded by their successors (waste-to-energy), (2) technologies modifying traditional practices that were at odds with modernized systems (wastewater reuse for agriculture) and (3) technologies co-existing alongside the dominant centralized system throughout the 20th century (cogeneration). The empirical findings are interpreted with reference to their contribution to scholarship on urban socio-technical transitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA