Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell ; 160(4): 607-618, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25662012

RESUMEN

EBER2 is an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2's presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B cell transcription factor PAX5. EBER2 interacts with PAX5 and is required for the localization of PAX5 to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA.


Asunto(s)
Herpesvirus Humano 4/metabolismo , Factor de Transcripción PAX5/metabolismo , ARN Viral/metabolismo , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Herpesvirus Humano 4/genética , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Secuencias Repetidas en Tándem , Proteínas de la Matriz Viral/genética , Replicación Viral
2.
Nucleic Acids Res ; 52(11): 6596-6613, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38554103

RESUMEN

The androgen receptor (AR) is a ligand-dependent nuclear transcription factor belonging to the steroid hormone nuclear receptor family. Due to its roles in regulating cell proliferation and differentiation, AR is tightly regulated to maintain proper levels of itself and the many genes it controls. AR dysregulation is a driver of many human diseases including prostate cancer. Though this dysregulation often occurs at the RNA level, there are many unknowns surrounding post-transcriptional regulation of AR mRNA, particularly the role that RNA secondary structure plays. Thus, a comprehensive analysis of AR transcript secondary structure is needed. We address this through the computational and experimental analyses of two key isoforms, full length (AR-FL) and truncated (AR-V7). Here, a combination of in-cell RNA secondary structure probing experiments (targeted DMS-MaPseq) and computational predictions were used to characterize the static structural landscape and conformational dynamics of both isoforms. Additionally, in-cell assays were used to identify functionally relevant structures in the 5' and 3' UTRs of AR-FL. A notable example is a conserved stem loop structure in the 5'UTR of AR-FL that can bind to Poly(RC) Binding Protein 2 (PCBP2). Taken together, our results reveal novel features that regulate AR expression.


Asunto(s)
Conformación de Ácido Nucleico , Receptores Androgénicos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/química , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Mensajero/química , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Masculino
3.
Biochemistry ; 63(10): 1287-1296, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727003

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshift stimulatory element (FSE) is necessary for programmed -1 ribosomal frameshifting (-1 PRF) and optimized viral efficacy. The FSE has an abundance of context-dependent alternate conformations, but two of the structures most crucial to -1 PRF are an attenuator hairpin and a three-stem H-type pseudoknot structure. A crystal structure of the pseudoknot alone features three RNA stems in a helically stacked linear structure, whereas a 6.9 Å cryo-EM structure including the upstream heptameric slippery site resulted in a bend between two stems. Our previous research alluded to an extended upstream multibranch loop that includes both the attenuator hairpin and the slippery site-a conformation not previously modeled. We aim to provide further context to the SARS-CoV-2 FSE via computational and medium resolution cryo-EM approaches, by presenting a 6.1 Å cryo-EM structure featuring a linear pseudoknot structure and a dynamic upstream multibranch loop.


Asunto(s)
Microscopía por Crioelectrón , Sistema de Lectura Ribosómico , Conformación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , SARS-CoV-2/química , SARS-CoV-2/genética , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Modelos Moleculares , COVID-19/virología
4.
RNA ; 28(4): 508-522, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983822

RESUMEN

Influenza A kills hundreds of thousands of people globally every year and has the potential to generate more severe pandemics. Influenza A's RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of 8 nucleotides in a pseudoknot that sequesters a 3' splice site in canonical pairs until a conformational change releases it into a dynamic 2 × 2-nt internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains 4 and likely 5 bp between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.


Asunto(s)
Gripe Humana , Sitios de Empalme de ARN , Secuencia de Bases , Humanos , Gripe Humana/genética , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Oligonucleótidos , Sitios de Empalme de ARN/genética , ARN Mensajero/metabolismo
5.
Cell Mol Life Sci ; 80(5): 136, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37131079

RESUMEN

Influenza A virus (IAV) is a respiratory virus that causes epidemics and pandemics. Knowledge of IAV RNA secondary structure in vivo is crucial for a better understanding of virus biology. Moreover, it is a fundament for the development of new RNA-targeting antivirals. Chemical RNA mapping using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) coupled with Mutational Profiling (MaP) allows for the thorough examination of secondary structures in low-abundance RNAs in their biological context. So far, the method has been used for analyzing the RNA secondary structures of several viruses including SARS-CoV-2 in virio and in cellulo. Here, we used SHAPE-MaP and dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) for genome-wide secondary structure analysis of viral RNA (vRNA) of the pandemic influenza A/California/04/2009 (H1N1) strain in both in virio and in cellulo environments. Experimental data allowed the prediction of the secondary structures of all eight vRNA segments in virio and, for the first time, the structures of vRNA5, 7, and 8 in cellulo. We conducted a comprehensive structural analysis of the proposed vRNA structures to reveal the motifs predicted with the highest accuracy. We also performed a base-pairs conservation analysis of the predicted vRNA structures and revealed many highly conserved vRNA motifs among the IAVs. The structural motifs presented herein are potential candidates for new IAV antiviral strategies.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , SARS-CoV-2/genética , Virus de la Influenza A/genética , ARN Viral/genética , Genómica
6.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34903581

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), continues to be a pressing health concern. In this study, we investigated the impact of SARS-CoV-2 infection on host microRNA (miRNA) populations in three human lung-derived cell lines, as well as in nasopharyngeal swabs from SARS-CoV-2-infected individuals. We did not detect any major and consistent differences in host miRNA levels after SARS-CoV-2 infection. However, we unexpectedly discovered a viral miRNA-like small RNA, named CoV2-miR-O7a (for SARS-CoV-2 miRNA-like ORF7a-derived small RNA). Its abundance ranges from low to moderate as compared to host miRNAs and it associates with Argonaute proteins-core components of the RNA interference pathway. We identify putative targets for CoV2-miR-O7a, including Basic Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which participates in interferon signaling. We demonstrate that CoV2-miR-O7a production relies on cellular machinery, yet is independent of Drosha protein, and is enhanced by the presence of a strong and evolutionarily conserved hairpin formed within the ORF7a sequence.


Asunto(s)
Regulación Viral de la Expresión Génica , ARN Pequeño no Traducido/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virales/genética , COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , ARN Pequeño no Traducido/genética , ARN Viral/genética , SARS-CoV-2/genética
7.
Proc Natl Acad Sci U S A ; 117(3): 1457-1467, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31900363

RESUMEN

Many proteins are refractory to targeting because they lack small-molecule binding pockets. An alternative to drugging these proteins directly is to target the messenger (m)RNA that encodes them, thereby reducing protein levels. We describe such an approach for the difficult-to-target protein α-synuclein encoded by the SNCA gene. Multiplication of the SNCA gene locus causes dominantly inherited Parkinson's disease (PD), and α-synuclein protein aggregates in Lewy bodies and Lewy neurites in sporadic PD. Thus, reducing the expression of α-synuclein protein is expected to have therapeutic value. Fortuitously, the SNCA mRNA has a structured iron-responsive element (IRE) in its 5' untranslated region (5' UTR) that controls its translation. Using sequence-based design, we discovered small molecules that target the IRE structure and inhibit SNCA translation in cells, the most potent of which is named Synucleozid. Both in vitro and cellular profiling studies showed Synucleozid directly targets the α-synuclein mRNA 5' UTR at the designed site. Mechanistic studies revealed that Synucleozid reduces α-synuclein protein levels by decreasing the amount of SNCA mRNA loaded into polysomes, mechanistically providing a cytoprotective effect in cells. Proteome- and transcriptome-wide studies showed that the compound's selectivity makes Synucleozid suitable for further development. Importantly, transcriptome-wide analysis of mRNAs that encode intrinsically disordered proteins revealed that each has structured regions that could be targeted with small molecules. These findings demonstrate the potential for targeting undruggable proteins at the level of their coding mRNAs. This approach, as applied to SNCA, is a promising disease-modifying therapeutic strategy for PD and other α-synucleinopathies.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/genética , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/metabolismo , Elementos de Respuesta , alfa-Sinucleína/genética , Regiones no Traducidas 3' , Animales , Línea Celular Tumoral , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , ARN Mensajero/química , ARN Mensajero/genética , alfa-Sinucleína/metabolismo
8.
Genes Dev ; 29(6): 567-84, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25792595

RESUMEN

Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.


Asunto(s)
Virus ARN/fisiología , ARN no Traducido/metabolismo , ARN Viral/metabolismo , Animales , Regulación de la Expresión Génica , MicroARNs/genética , Virus ARN/genética , Virus ARN/metabolismo , ARN no Traducido/genética , ARN Viral/genética
9.
J Biol Chem ; 297(6): 101245, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34688660

RESUMEN

RNA structure in the influenza A virus (IAV) has been the focus of several studies that have shown connections between conserved secondary structure motifs and their biological function in the virus replication cycle. Questions have arisen on how to best recognize and understand the pandemic properties of IAV strains from an RNA perspective, but determination of the RNA secondary structure has been challenging. Herein, we used chemical mapping to determine the secondary structure of segment 8 viral RNA (vRNA) of the pandemic A/California/04/2009 (H1N1) strain of IAV. Additionally, this long, naturally occurring RNA served as a model to evaluate RNA mapping with 4-thiouridine (4sU) crosslinking. We explored 4-thiouridine as a probe of nucleotides in close proximity, through its incorporation into newly transcribed RNA and subsequent photoactivation. RNA secondary structural features both universal to type A strains and unique to the A/California/04/2009 (H1N1) strain were recognized. 4sU mapping confirmed and facilitated RNA structure prediction, according to several rules: 4sU photocross-linking forms efficiently in the double-stranded region of RNA with some flexibility, in the ends of helices, and across bulges and loops when their structural mobility is permitted. This method highlighted three-dimensional properties of segment 8 vRNA secondary structure motifs and allowed to propose several long-range three-dimensional interactions. 4sU mapping combined with chemical mapping and bioinformatic analysis could be used to enhance the RNA structure determination as well as recognition of target regions for antisense strategies or viral RNA detection.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Virus de la Influenza A/química , Gripe Humana/virología , ARN Viral/química , Tiouridina/química , Emparejamiento Base , Secuencia de Bases , Humanos , Conformación de Ácido Nucleico
10.
J Am Chem Soc ; 144(26): 11620-11625, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737519

RESUMEN

The interactions between cellular RNAs in MDA-MB-231 triple negative breast cancer cells and a panel of small molecules appended with a diazirine cross-linking moiety and an alkyne tag were probed transcriptome-wide in live cells. The alkyne tag allows for facile pull-down of cellular RNAs bound by each small molecule, and the enrichment of each RNA target defines the compound's molecular footprint. Among the 34 chemically diverse small molecules studied, six bound and enriched cellular RNAs. The most highly enriched interaction occurs between the novel RNA-binding compound F1 and a structured region in the 5' untranslated region of quiescin sulfhydryl oxidase 1 isoform a (QSOX1-a), not present in isoform b. Additional studies show that F1 specifically bound RNA over DNA and protein; that is, we studied the entire DNA, RNA, and protein interactome. This interaction was used to design a ribonuclease targeting chimera (RIBOTAC) to locally recruit Ribonuclease L to degrade QSOX1 mRNA in an isoform-specific manner, as QSOX1-a, but not QSOX1-b, mRNA and protein levels were reduced. The RIBOTAC alleviated QSOX1-mediated phenotypes in cancer cells. This approach can be broadly applied to discover ligands that bind RNA in cells, which could be bioactive themselves or augmented with functionality such as targeted degradation.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , ARN , Alquinos , Sitios de Unión , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 116(16): 7799-7804, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30926669

RESUMEN

Myotonic dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by an expanded CTG repeat that is transcribed into r(CUG)exp The RNA repeat expansion sequesters regulatory proteins such as Muscleblind-like protein 1 (MBNL1), which causes pre-mRNA splicing defects. The disease-causing r(CUG)exp has been targeted by antisense oligonucleotides, CRISPR-based approaches, and RNA-targeting small molecules. Herein, we describe a designer small molecule, Cugamycin, that recognizes the structure of r(CUG)exp and cleaves it in both DM1 patient-derived myotubes and a DM1 mouse model, leaving short repeats of r(CUG) untouched. In contrast, oligonucleotides that recognize r(CUG) sequence rather than structure cleave both long and short r(CUG)-containing transcripts. Transcriptomic, histological, and phenotypic studies demonstrate that Cugamycin broadly and specifically relieves DM1-associated defects in vivo without detectable off-targets. Thus, small molecules that bind and cleave RNA have utility as lead chemical probes and medicines and can selectively target disease-causing RNA structures to broadly improve defects in preclinical animal models.


Asunto(s)
Bleomicina/análogos & derivados , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Oligonucleótidos/química , Empalme del ARN/genética , ARN/genética , ARN/metabolismo , Expansión de Repetición de Trinucleótido/genética , Animales , Bleomicina/química , Modelos Animales de Enfermedad , Diseño de Fármacos , Humanos , Ratones , Oligonucleótidos/metabolismo
12.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269600

RESUMEN

Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.


Asunto(s)
Regulación Viral de la Expresión Génica , Genoma Viral/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Conformación de Ácido Nucleico , ARN Viral/química , Animales , Secuencia de Bases , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Modelos Moleculares , Motivos de Nucleótidos/genética , Pliegue del ARN , ARN Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Methods ; 183: 57-67, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711930

RESUMEN

Functional RNA structures are prevalent in viral genomes, and have been shown to play roles in almost every aspect of their biology. However, the majority of viral RNA remains structurally uncharacterized. This is likely to remain true as the cost of sequencing decreases much faster than the cost of structural characterizations. Because of this, there is a need for rapid, inexpensive methods to highlight regions of viral RNA which are ideal candidates for structure-function analyses. The ScanFold method was developed as a single sequence alternative to traditional RNA structural motif discovery pipelines, which rely heavily on well curated sequence alignments to identify conserved RNA structures. ScanFold focuses on identifying (based on their more stable than expected folding energies) the most likely functional structures encoded within a single large RNA sequence, while allowing predicted motifs to be tested for evidence of structural conservation later. Decoupling these processes can be a benefit to researchers studying viruses lacking the ideal phylogenetic depth to yield evidence of structural conservation. Here, we demonstrate how the most significant ScanFold predicted structures correspond to higher base pairing probabilities, SHAPE reactivities, and predict known functional structures within the ZIKV and HIV-1 genomes with accuracy. Best practices and examples are also shown to aid users in utilizing ScanFold for their own systems of interest. ScanFold is available as a Webserver (https://mosslabtools.bb.iastate.edu/scanfold) or can be downloaded (https://github.com/moss-lab/ScanFold) and run locally.


Asunto(s)
Biología Computacional/métodos , Genoma Viral/genética , ARN Viral/genética , Análisis de Secuencia de ARN/métodos , Virus del Dengue/genética , VIH-1/genética , Hepacivirus/genética , Conformación de Ácido Nucleico , Filogenia , ARN Viral/química , Alineación de Secuencia , Virus Zika/genética
14.
Chem Soc Rev ; 49(20): 7252-7270, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32935689

RESUMEN

The design and discovery of small molecule medicines has largely been focused on a small number of druggable protein families. A new paradigm is emerging, however, in which small molecules exert a biological effect by interacting with RNA, both to study human disease biology and provide lead therapeutic modalities. Due to this potential for expanding target pipelines and treating a larger number of human diseases, robust platforms for the rational design and optimization of small molecules interacting with RNAs (SMIRNAs) are in high demand. This review highlights three major pillars in this area. First, the transcriptome-wide identification and validation of structured RNA elements, or motifs, within disease-causing RNAs directly from sequence is presented. Second, we provide an overview of high-throughput screening approaches to identify SMIRNAs as well as discuss the lead identification strategy, Inforna, which decodes the three-dimensional (3D) conformation of RNA motifs with small molecule binding partners, directly from sequence. An emphasis is placed on target validation methods to study the causality between modulating the RNA motif in vitro and the phenotypic outcome in cells. Third, emergent modalities that convert occupancy-driven mode of action SMIRNAs into event-driven small molecule chemical probes, such as RNA cleavers and degraders, are presented. Finally, the future of the small molecule RNA therapeutics field is discussed, as well as hurdles to overcome to develop potent and selective RNA-centric chemical probes.


Asunto(s)
ARN/química , Bibliotecas de Moléculas Pequeñas/química , Antagomirs/química , Antagomirs/metabolismo , Diseño de Fármacos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , MicroARNs/química , MicroARNs/metabolismo , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Viral/química , ARN Viral/metabolismo
15.
RNA ; 24(3): 273-286, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29183923

RESUMEN

With the widespread application of high-throughput sequencing, novel RNA sequences are being discovered at an astonishing rate. The analysis of function, however, lags behind. In both the cis- and trans-regulatory functions of RNA, secondary structure (2D base-pairing) plays essential regulatory roles. In order to test RNA function, it is essential to be able to design and analyze mutations that can affect structure. This was the motivation for the creation of the RNA2DMut web tool. With RNA2DMut, users can enter in RNA sequences to analyze, constrain mutations to specific residues, or limit changes to purines/pyrimidines. The sequence is analyzed at each base to determine the effect of every possible point mutation on 2D structure. The metrics used in RNA2DMut rely on the calculation of the Boltzmann structure ensemble and do not require a robust 2D model of RNA structure for designing mutations. This tool can facilitate a wide array of uses involving RNA: for example, in designing and evaluating mutants for biological assays, interrogating RNA-protein interactions, identifying key regions to alter in SELEX experiments, and improving RNA folding and crystallization properties for structural biology. Additional tools are available to help users introduce other mutations (e.g., indels and substitutions) and evaluate their effects on RNA structure. Example calculations are shown for five RNAs that require 2D structure for their function: the MALAT1 mascRNA, an influenza virus splicing regulatory motif, the EBER2 viral noncoding RNA, the Xist lncRNA repA region, and human Y RNA 5. RNA2DMut can be accessed at https://rna2dmut.bb.iastate.edu/.


Asunto(s)
Biología Computacional/métodos , Mutación , Conformación de Ácido Nucleico , ARN/genética , Programas Informáticos , Animales , Emparejamiento Base , Aves , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Ratones , ARN/química , Pliegue del ARN , Análisis de Secuencia de ARN , Porcinos
16.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567979

RESUMEN

Recent studies have identified circular RNAs (circRNAs) expressed from the Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) human DNA tumor viruses. To gain initial insights into the potential relevance of EBV circRNAs in virus biology and disease, we assessed the circRNAome of the interspecies homologue rhesus macaque lymphocryptovirus (rLCV) in a naturally occurring lymphoma from a simian immunodeficiency virus (SIV)-infected rhesus macaque. This analysis revealed rLCV orthologues of the latency-associated EBV circular RNAs circRPMS1_E4_E3a and circEBNA_U. Also identified in two samples displaying unusually high lytic gene expression was a novel rLCV circRNA that contains both conserved and rLCV-specific RPMS1 exons and whose backsplice junctions flank an rLCV lytic origin of replication (OriLyt). Analysis of a lytic infection model for the murid herpesvirus 68 (MHV68) rhadinovirus identified a cluster of circRNAs near an MHV68 lytic origin of replication, with the most abundant of these, circM11_ORF69, spanning the OriLyt. Lastly, analysis of KSHV latency and reactivation models revealed the latency associated circRNA originating from the vIRF4 gene as the predominant viral circRNA. Together, the results of this study broaden our appreciation for circRNA repertoires in the Lymphocryptovirus and Rhadinovirus genera of gammaherpesviruses and provide evolutionary support for viral circRNA functions in latency and viral replication.IMPORTANCE Infection with oncogenic gammaherpesviruses leads to long-term viral persistence through a dynamic interplay between the virus and the host immune system. Critical for remodeling of the host cell environment after the immune responses are viral noncoding RNAs that modulate host signaling pathways without attracting adaptive immune recognition. Despite the importance of noncoding RNAs in persistent infection, the circRNA class of noncoding RNAs has only recently been identified in gammaherpesviruses. Accordingly, their roles in virus infection and associated oncogenesis are unknown. Here we report evolutionary conservation of EBV-encoded circRNAs determined by assessing the circRNAome in rLCV-infected lymphomas from an SIV-infected rhesus macaque, and we report latent and lytic circRNAs from KSHV and MHV68. These experiments demonstrate utilization of the circular RNA class of RNAs across 4 members of the gammaherpesvirus subfamily, and they identify orthologues and potential homoplastic circRNAs, implying conserved circRNA functions in virus biology and associated malignancies.


Asunto(s)
Gammaherpesvirinae/genética , ARN/genética , Animales , Línea Celular , Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Lymphocryptovirus/genética , Macaca mulatta , Masculino , ARN Circular , ARN Viral/genética , Rhadinovirus/genética , Virus de la Inmunodeficiencia de los Simios/genética , Latencia del Virus/genética , Replicación Viral/genética
17.
PLoS Pathog ; 14(8): e1007206, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080890

RESUMEN

Our appreciation for the extent of Epstein Barr virus (EBV) transcriptome complexity continues to grow through findings of EBV encoded microRNAs, new long non-coding RNAs as well as the more recent discovery of over a hundred new polyadenylated lytic transcripts. Here we report an additional layer to the EBV transcriptome through the identification of a repertoire of latent and lytic viral circular RNAs. Utilizing RNase R-sequencing with cell models representing latency types I, II, and III, we identified EBV encoded circular RNAs expressed from the latency Cp promoter involving backsplicing from the W1 and W2 exons to the C1 exon, from the EBNA BamHI U fragment exon, and from the latency long non-coding RPMS1 locus. In addition, we identified circular RNAs expressed during reactivation including backsplicing from exon 8 to exon 2 of the LMP2 gene and a highly expressed circular RNA derived from intra-exonic backsplicing within the BHLF1 gene. While expression of most of these circular RNAs was found to depend on the EBV transcriptional program utilized and the transcription levels of the associated loci, expression of LMP2 exon 8 to exon 2 circular RNA was found to be cell model specific. Altogether we identified over 30 unique EBV circRNAs candidates and we validated and determined the structural features, expression profiles and nuclear/cytoplasmic distributions of several predominant and notable viral circRNAs. Further, we show that two of the EBV circular RNAs derived from the RPMS1 locus are detected in EBV positive clinical stomach cancer specimens. This study increases the known EBV latency and lytic transcriptome repertoires to include viral circular RNAs and it provides an essential foundation and resource for investigations into the functions and roles of this new class of EBV transcripts in EBV biology and diseases.


Asunto(s)
Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 4/genética , ARN Viral/genética , ARN/genética , Latencia del Virus/genética , Línea Celular , Infecciones por Virus de Epstein-Barr/genética , Humanos , ARN Circular , ARN no Traducido/genética
19.
RNA ; 22(8): 1181-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27335146

RESUMEN

Herpesvirus saimiri, an oncogenic herpesvirus, during latency produces seven small nuclear RNAs, called the Herpesvirus saimiri U RNAs (HSUR1-7). HSUR1 mediates degradation of the host microRNA, miR-27, via a process that requires imperfect base-pairing. The decreased levels of miR-27 lead to prolonged T-cell activation and likely contribute to oncogenesis. To gain insight into HSUR1-mediated degradation of miR-27, we probed the in vivo secondary structure of HSUR1 and coupled this with bioinformatic structural analyses. The results suggest that HSUR1 adopts a conformation different than previously believed and that the region complementary to miR-27 lacks stable structure. To determine whether HSUR1 structural flexibility is important for its ability to mediate miR-27 degradation, we performed structurally informative mutagenic analyses of HSUR1. HSUR1 mutants in which the miR-27 binding site sequence is preserved, but sequestered in predicted helices, lose their ability to decrease miR-27 levels. These results indicate that the HSUR1 miR27-binding region must be available in a conformationally flexible segment for noncoding RNA function.


Asunto(s)
Genes Virales , Herpesvirus Saimiriino 2/metabolismo , MicroARNs/metabolismo , ARN Nuclear Pequeño/metabolismo , Animales , Callithrix , Herpesvirus Saimiriino 2/genética
20.
PLoS Genet ; 11(12): e1005668, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26646615

RESUMEN

The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5'-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function.


Asunto(s)
Evolución Molecular , Conformación de Ácido Nucleico , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Animales , Metilación de ADN/genética , Humanos , Ratones , Mutación Puntual/genética , Pliegue del ARN/genética , ARN Ribosómico/genética , Alineación de Secuencia , Análisis de Secuencia de ARN , Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA