Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420133

RESUMEN

The ectopic expression of the transcription factors OCT4, SOX2, KLF4 and MYC (OSKM) enables reprogramming of differentiated cells into pluripotent embryonic stem cells. Methods based on partial and reversible in vivo reprogramming are a promising strategy for tissue regeneration and rejuvenation. However, little is known about the barriers that impair reprogramming in an in vivo context. We report that natural killer (NK) cells significantly limit reprogramming, both in vitro and in vivo. Cells and tissues in the intermediate states of reprogramming upregulate the expression of NK-activating ligands, such as MULT1 and ICAM1. NK cells recognize and kill partially reprogrammed cells in a degranulation-dependent manner. Importantly, in vivo partial reprogramming is strongly reduced by adoptive transfer of NK cells, whereas it is significantly increased by their depletion. Notably, in the absence of NK cells, the pancreatic organoids derived from OSKM-expressing mice are remarkably large, suggesting that ablating NK surveillance favours the acquisition of progenitor-like properties. We conclude that NK cells pose an important barrier for in vivo reprogramming, and speculate that this concept may apply to other contexts of transient cellular plasticity.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes , Animales , Diferenciación Celular , Reprogramación Celular/genética , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Células Asesinas Naturales/metabolismo , Factor 4 Similar a Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción SOXB1/metabolismo
2.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34117889

RESUMEN

The intimate relationships between cell fate and metabolism have long been recognized, but a mechanistic understanding of how metabolic pathways are dynamically regulated during development and disease, how they interact with signalling pathways, and how they affect differential gene expression is only emerging now. We summarize the key findings and the major themes that emerged from the virtual Keystone Symposium 'Metabolic Decisions in Development and Disease' held in March 2021.


Asunto(s)
Enfermedad , Crecimiento y Desarrollo , Redes y Vías Metabólicas , Animales , Diferenciación Celular , Microbioma Gastrointestinal , Expresión Génica , Humanos , Transducción de Señal
3.
Nature ; 502(7471): 340-5, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24025773

RESUMEN

Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Teratoma/metabolismo , Células Madre Totipotentes/citología , Animales , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Desdiferenciación Celular , Separación Celular , Células Cultivadas , Reprogramación Celular/genética , Ectodermo/citología , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Fibroblastos/citología , Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Intestinos/citología , Riñón/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Especificidad de Órganos , Páncreas/citología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Estómago/citología , Teratoma/genética , Teratoma/patología , Células Madre Totipotentes/metabolismo , Transcriptoma/genética , Trofoblastos/citología
4.
Nat Metab ; 5(12): 2094-2110, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38123718

RESUMEN

The thyroid functions as an apex endocrine organ that controls growth, differentiation and metabolism1, and thyroid diseases comprise the most common endocrine disorders2. Nevertheless, high-resolution views of the cellular composition and signals that govern the thyroid have been lacking3,4. Here, we show that Notch signalling controls homeostasis and thermoregulation in adult mammals through a mitochondria-based mechanism in a subset of thyrocytes. We discover two thyrocyte subtypes in mouse and human thyroids, identified in single-cell analyses by different levels of metabolic activity and Notch signalling. Therapeutic antibody blockade of Notch in adult mice inhibits a thyrocyte-specific transcriptional program and induces thyrocyte defects due to decreased mitochondrial activity and ROS production. Thus, disrupting Notch signalling in adult mice causes hypothyroidism, characterized by reduced levels of circulating thyroid hormone and dysregulation of whole-body thermoregulation. Inducible genetic deletion of Notch1 and 2 in thyrocytes phenocopies this antibody-induced hypothyroidism, establishing a direct role for Notch in adult murine thyrocytes. We confirm that hypothyroidism is enriched in children with Alagille syndrome, a genetic disorder marked by Notch mutations, suggesting that these findings translate to humans.


Asunto(s)
Hipotiroidismo , Células Epiteliales Tiroideas , Adulto , Niño , Humanos , Ratones , Animales , Mamíferos , Homeostasis
5.
Aging Cell ; 21(3): e13578, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35235716

RESUMEN

The expression of the pluripotency factors OCT4, SOX2, KLF4, and MYC (OSKM) can convert somatic differentiated cells into pluripotent stem cells in a process known as reprogramming. Notably, partial and reversible reprogramming does not change cell identity but can reverse markers of aging in cells, improve the capacity of aged mice to repair tissue injuries, and extend longevity in progeroid mice. However, little is known about the mechanisms involved. Here, we have studied changes in the DNA methylome, transcriptome, and metabolome in naturally aged mice subject to a single period of transient OSKM expression. We found that this is sufficient to reverse DNA methylation changes that occur upon aging in the pancreas, liver, spleen, and blood. Similarly, we observed reversion of transcriptional changes, especially regarding biological processes known to change during aging. Finally, some serum metabolites and biomarkers altered with aging were also restored to young levels upon transient reprogramming. These observations indicate that a single period of OSKM expression can drive epigenetic, transcriptomic, and metabolomic changes toward a younger configuration in multiple tissues and in the serum.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Reprogramación Celular/genética , Metilación de ADN/genética , Epigenoma , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Rejuvenecimiento
6.
Methods Mol Biol ; 2318: 267-279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019296

RESUMEN

Cellular reprogramming is a process by which adult differentiated cells lose their identity and are converted into pluripotent stem cells, known as induced pluripotent stem (iPS) cells. This process can be achieved in vitro and in vivo and is relevant for many fields including regenerative medicine and cancer. Cellular reprogramming is commonly induced by the ectopic expression of a transcription factor cocktail composed by Oct4, Sox2, Klf4, and Myc (abbreviated as OSKM), and its efficiency and kinetics are strongly dependent on the presence of Myc. Here, we describe a versatile method to study reprogramming in vivo based on the use of adeno-associated viral (AAV) vectors, which allows the targeting of specific organs and cell types. This method can be used to test Myc mutations or genes that may replace Myc, or be combined with different Myc regulators. In vivo reprogramming can be scored by the presence of teratomas and the isolation of in vivo iPS, thereby providing a simple surrogate for the function of Myc in dedifferentiation and stemness. Our protocol can be divided into five steps: (1) intravenous inoculation of AAV vectors; (2) monitoring the animals until the appearance of teratomas; (3) analysis of teratomas; (4) histopathological analysis of mouse organs; and (5) isolation of in vivo-generated iPS cells from teratomas, blood, and bone marrow. The information obtained by this in vivo testing platform may provide relevant information on the role of Myc in tissue regeneration, stemness, and cancer.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Reprogramación Celular/fisiología , ADN/genética , Dependovirus/genética , Fibroblastos/citología , Genes myc/genética , Genes myc/fisiología , Ingeniería Genética/métodos , Vectores Genéticos/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Transducción Genética
7.
J Am Heart Assoc ; 8(18): e012875, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31510873

RESUMEN

Background Mutations in the POT1 gene explain abnormally long telomeres and multiple tumors including cardiac angiosarcomas (CAS). However, the link between long telomeres and tumorigenesis is poorly understood. Methods and Results Here, we have studied the somatic landscape of 3 different angiosarcoma patients with mutations in the POT1 gene to further investigate this tumorigenesis process. In addition, the genetic landscape of 7 CAS patients without mutations in the POT1 gene has been studied. Patients with CAS and nonfunctional POT1 did not repress ATR (ataxia telangiectasia RAD3-related)-dependent DNA damage signaling and showed a constitutive increase of cell cycle arrest and somatic activating mutations in the VEGF (vascular endothelial growth factor)/angiogenesis pathway (KDR gene). The same observation was made in POT1 mutation carriers with tumors different from CAS and also in CAS patients without mutations in the POT1 gene but with mutations in other genes involved in DNA damage signaling. Conclusions Inhibition of POT1 function and damage-response malfunction activated DNA damage signaling and increased cell cycle arrest as well as interfered with apoptosis, which would permit acquisition of somatic mutations in the VEGF/angiogenesis pathway that drives tumor formation. Therapies based on the inhibition of damage signaling in asymptomatic carriers may diminish defects on cell cycle arrest and thus prevent the apoptosis deregulation that leads to the acquisition of driver mutations.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Daño del ADN/genética , Neoplasias Cardíacas/genética , Hemangiosarcoma/genética , Proteínas de Unión a Telómeros/genética , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinogénesis , Estudios de Casos y Controles , Proteínas de Unión al ADN/genética , Neoplasias Cardíacas/metabolismo , Hemangiosarcoma/metabolismo , Humanos , Inmunohistoquímica , Mutación , Neovascularización Patológica/genética , Complejo Shelterina , Transducción de Señal , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Secuenciación del Exoma
8.
Aging Cell ; 17(2)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29280266

RESUMEN

Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin-6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c-Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprogramming in other cells, both processes occurring concomitantly and in close proximity. In this system, Ink4a/Arf-null tissues cannot undergo senescence, fail to produce IL6, and cannot reprogram efficiently; whereas p53-null tissues undergo extensive damage and senescence, produce high levels of IL6, and reprogram efficiently. Here, we have further explored the genetic determinants of in vivo reprogramming. We report that Ink4a, but not Arf, is necessary for OSKM-induced senescence and, thereby, for the paracrine stimulation of reprogramming. However, in the absence of p53, IL6 production and reprogramming become independent of Ink4a, as revealed by the analysis of Ink4a/Arf/p53 deficient mice. In the case of the cell cycle inhibitor p21, its protein levels are highly elevated upon OSKM activation in a p53-independent manner, and we show that p21-null tissues present increased levels of senescence, IL6, and reprogramming. We also report that Il6-mutant tissues are impaired in undergoing reprogramming, thus reinforcing the critical role of IL6 in reprogramming. Finally, young female mice present lower efficiency of in vivo reprogramming compared to male mice, and this gender difference disappears with aging, both observations being consistent with the known anti-inflammatory effect of estrogens. The current findings regarding the interplay between senescence and reprogramming may conceivably apply to other contexts of tissue damage.


Asunto(s)
Reprogramación Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Interleucina-6/metabolismo , Animales , Senescencia Celular , Femenino , Humanos , Factor 4 Similar a Kruppel , Ratones
9.
Nat Commun ; 9(1): 2651, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985406

RESUMEN

In vivo reprogramming of somatic cells into induced pluripotent stem cells (iPSC) holds vast potential for basic research and regenerative medicine. However, it remains hampered by a need for vectors to express reprogramming factors (Oct-3/4, Klf4, Sox2, c-Myc; OKSM) in selected organs. Here, we report OKSM delivery vectors based on pseudotyped Adeno-associated virus (AAV). Using the AAV-DJ capsid, we could robustly reprogram mouse embryonic fibroblasts with low vector doses. Swapping to AAV8 permitted to efficiently reprogram somatic cells in adult mice by intravenous vector delivery, evidenced by hepatic or extra-hepatic teratomas and iPSC in the blood. Notably, we accomplished full in vivo reprogramming without c-Myc. Most iPSC generated in vitro or in vivo showed transcriptionally silent, intronic or intergenic vector integration, likely reflecting the increased host genome accessibility during reprogramming. Our approach crucially advances in vivo reprogramming technology, and concurrently facilitates investigations into the mechanisms and consequences of AAV persistence.


Asunto(s)
Reprogramación Celular/genética , Dependovirus/genética , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Línea Celular , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Expresión Génica , Vectores Genéticos/genética , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Ratones Endogámicos C57BL , Ratones Desnudos , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética
10.
Stem Cell Reports ; 8(2): 460-475, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28162998

RESUMEN

Reprogramming of differentiated cells into induced pluripotent stem cells has been recently achieved in vivo in mice. Telomeres are essential for chromosomal stability and determine organismal life span as well as cancer growth. Here, we study whether tissue dedifferentiation induced by in vivo reprogramming involves changes at telomeres. We find telomerase-dependent telomere elongation in the reprogrammed areas. Notably, we found highly upregulated expression of the TRF1 telomere protein in the reprogrammed areas, which was independent of telomere length. Moreover, TRF1 inhibition reduced in vivo reprogramming efficiency. Importantly, we extend the finding of TRF1 upregulation to pathological tissue dedifferentiation associated with neoplasias, in particular during pancreatic acinar-to-ductal metaplasia, a process that involves transdifferentiation of adult acinar cells into ductal-like cells due to K-Ras oncogene expression. These findings place telomeres as important players in cellular plasticity both during in vivo reprogramming and in pathological conditions associated with increased plasticity, such as cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Reprogramación Celular/genética , Telómero/genética , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Desdiferenciación Celular/genética , Transformación Celular Neoplásica/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica , Heterocromatina/genética , Heterocromatina/metabolismo , Ratones , Ratones Transgénicos , Subunidades de Proteína/genética , Células Madre/citología , Células Madre/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Homeostasis del Telómero , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Cohesinas
11.
Science ; 354(6315)2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27884981

RESUMEN

Reprogramming of differentiated cells into pluripotent cells can occur in vivo, but the mechanisms involved remain to be elucidated. Senescence is a cellular response to damage, characterized by abundant production of cytokines and other secreted factors that, together with the recruitment of inflammatory cells, result in tissue remodeling. Here, we show that in vivo expression of the reprogramming factors OCT4, SOX2, KLF4, and cMYC (OSKM) in mice leads to senescence and reprogramming, both coexisting in close proximity. Genetic and pharmacological analyses indicate that OSKM-induced senescence requires the Ink4a/Arf locus and, through the production of the cytokine interleukin-6, creates a permissive tissue environment for in vivo reprogramming. Biological conditions linked to senescence, such as tissue injury or aging, favor in vivo reprogramming by OSKM. These observations may be relevant for tissue repair.


Asunto(s)
Reprogramación Celular/genética , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción/metabolismo , Compuestos de Anilina/farmacología , Animales , Antineoplásicos/farmacología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regulación de la Expresión Génica , Sitios Genéticos , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-6/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Sulfonamidas/farmacología , Teratoma/genética , Teratoma/patología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA