Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(15): e107134, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34180064

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial-associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+ ) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta-b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2-mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA-mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.


Asunto(s)
Retinopatía Diabética/genética , Proteína Quinasa C beta/genética , ARN Largo no Codificante/genética , Pez Cebra/genética , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Estudios de Casos y Controles , Retinopatía Diabética/fisiopatología , Embrión no Mamífero , Endotelio Vascular , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Persona de Mediana Edad , Permeabilidad , Proteína Quinasa C beta/metabolismo , ARN Largo no Codificante/sangre , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
PLoS Biol ; 20(5): e3001634, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35584084

RESUMEN

Therapeutic methods to modulate skin pigmentation has important implications for skin cancer prevention and for treating cutaneous hyperpigmentary conditions. Towards defining new potential targets, we followed temporal dynamics of melanogenesis using a cell-autonomous pigmentation model. Our study elucidates 3 dominant phases of synchronized metabolic and transcriptional reprogramming. The melanogenic trigger is associated with high MITF levels along with rapid uptake of glucose. The transition to pigmented state is accompanied by increased glucose channelisation to anabolic pathways that support melanosome biogenesis. SREBF1-mediated up-regulation of fatty acid synthesis results in a transient accumulation of lipid droplets and enhancement of fatty acids oxidation through mitochondrial respiration. While this heightened bioenergetic activity is important to sustain melanogenesis, it impairs mitochondria lately, shifting the metabolism towards glycolysis. This recovery phase is accompanied by activation of the NRF2 detoxication pathway. Finally, we show that inhibitors of lipid metabolism can resolve hyperpigmentary conditions in a guinea pig UV-tanning model. Our study reveals rewiring of the metabolic circuit during melanogenesis, and fatty acid metabolism as a potential therapeutic target in a variety of cutaneous diseases manifesting hyperpigmentary phenotype.


Asunto(s)
Metabolismo de los Lípidos , Melaninas , Pigmentación de la Piel , Animales , Ácidos Grasos , Glucosa , Cobayas , Melaninas/metabolismo
3.
J Biol Chem ; 298(12): 102681, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356899

RESUMEN

Stromal Interaction Molecule1 (STIM1) is an endoplasmic reticulum membrane-localized calcium (Ca2+) sensor that plays a critical role in the store-operated Ca2+ entry (SOCE) pathway. STIM1 regulates a variety of physiological processes and contributes to a plethora of pathophysiological conditions. Several disease states and enhanced biological phenomena are associated with increased STIM1 levels and activity. However, molecular mechanisms driving STIM1 expression remain largely unappreciated. We recently reported that STIM1 expression augments during pigmentation. Nonetheless, the molecular choreography regulating STIM1 expression in melanocytes is completely unexplored. Here, we characterized the molecular events that regulate STIM1 expression during pigmentation. We demonstrate that physiological melanogenic stimuli α-melanocyte stimulating hormone (αMSH) increases STIM1 mRNA and protein levels. Further, αMSH stimulates STIM1 promoter-driven luciferase activity, thereby suggesting transcriptional upregulation of STIM1. We show that downstream of αMSH, microphthalmia-associated transcription factor (MITF) drives STIM1 expression. By performing knockdown and overexpression studies, we corroborated that MITF regulates STIM1 expression and SOCE. Next, we conducted extensive bioinformatics analysis and identified MITF-binding sites on the STIM1 promoter. We validated significance of the MITF-binding sites in controlling STIM1 expression by performing ChIP and luciferase assays with truncated STIM1 promoters. Moreover, we confirmed MITF's role in regulating STIM1 expression and SOCE in primary human melanocytes. Importantly, analysis of publicly available datasets substantiates a positive correlation between STIM1 and MITF expression in sun-exposed tanned human skin, thereby highlighting physiological relevance of this regulation. Taken together, we have identified a novel physiologically relevant molecular pathway that transcriptionally enhances STIM1 expression.


Asunto(s)
Señalización del Calcio , Calcio , Humanos , Calcio/metabolismo , Señalización del Calcio/fisiología , Factor de Transcripción Asociado a Microftalmía/genética , Canales de Calcio/metabolismo , Melanocitos/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Proteína ORAI1/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
Development ; 147(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32098766

RESUMEN

In the neural crest lineage, progressive fate restriction and stem cell assignment are crucial for both development and regeneration. Whereas fate commitment events have distinct transcriptional footprints, fate biasing is often transitory and metastable, and is thought to be moulded by epigenetic programmes. Therefore, the molecular basis of specification is difficult to define. In this study, we established a role for a histone variant, H2a.z.2, in specification of the melanocyte lineage from multipotent neural crest cells. H2a.z.2 silencing reduces the number of melanocyte precursors in developing zebrafish embryos and from mouse embryonic stem cells in vitro We demonstrate that this histone variant occupies nucleosomes in the promoter of the key melanocyte determinant mitf, and enhances its induction. CRISPR/Cas9-based targeted mutagenesis of this gene in zebrafish drastically reduces adult melanocytes, as well as their regeneration. Thereby, our study establishes the role of a histone variant upstream of the core gene regulatory network in the neural crest lineage. This epigenetic mark is a key determinant of cell fate and facilitates gene activation by external instructive signals, thereby establishing melanocyte fate identity.


Asunto(s)
Células Madre Embrionarias/citología , Histonas/genética , Melanocitos/citología , Factor de Transcripción Asociado a Microftalmía/genética , Cresta Neural/citología , Proteínas de Pez Cebra/genética , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Linaje de la Célula , Redes Reguladoras de Genes/genética , Melanoma Experimental , Ratones , Pez Cebra/embriología
5.
EMBO J ; 37(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29311116

RESUMEN

Endoplasmic reticulum (ER)-plasma membrane (PM) junctions form functionally active microdomains that connect intracellular and extracellular environments. While the key role of these interfaces in maintenance of intracellular Ca2+ levels has been uncovered in recent years, the functional significance of ER-PM junctions in non-excitable cells has remained unclear. Here, we show that the ER calcium sensor protein STIM1 (stromal interaction molecule 1) interacts with the plasma membrane-localized adenylyl cyclase 6 (ADCY6) to govern melanogenesis. The physiological stimulus α-melanocyte-stimulating hormone (αMSH) depletes ER Ca2+ stores, thus recruiting STIM1 to ER-PM junctions, which in turn activates ADCY6. Using zebrafish as a model system, we further established STIM1's significance in regulating pigmentation in vivo STIM1 domain deletion studies reveal the importance of Ser/Pro-rich C-terminal region in this interaction. This mechanism of cAMP generation creates a positive feedback loop, controlling the output of the classical αMSH-cAMP-MITF axis in melanocytes. Our study thus delineates a signaling module that couples two fundamental secondary messengers to drive pigmentation. Given the central role of calcium and cAMP signaling pathways, this module may be operative during various other physiological processes and pathological conditions.


Asunto(s)
Adenilil Ciclasas/metabolismo , Señalización del Calcio/fisiología , AMP Cíclico/metabolismo , Melanocitos/metabolismo , Pigmentación de la Piel/genética , Molécula de Interacción Estromal 1/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Proliferación Celular/genética , Retículo Endoplásmico/metabolismo , Activación Enzimática , Perfilación de la Expresión Génica , Melanocitos/citología , Ratones , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Pez Cebra , alfa-MSH/metabolismo
6.
EMBO J ; 36(6): 797-815, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28219928

RESUMEN

Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Proteína ORAI1/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Sodio/metabolismo , Línea Celular , Humanos , Proteínas Mitocondriales , Oxidación-Reducción
7.
Nucleic Acids Res ; 47(11): 5852-5866, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31081026

RESUMEN

Semi-autonomous functioning of mitochondria in eukaryotic cell necessitates coordination with nucleus. Several RNA species fine-tune mitochondrial processes by synchronizing with the nuclear program, however the involved components remain enigmatic. In this study, we identify a widely conserved dually localized protein Myg1, and establish its role as a 3'-5' RNA exonuclease. We employ mouse melanoma cells, and knockout of the Myg1 ortholog in Saccharomyces cerevisiae with complementation using human Myg1 to decipher the conserved role of Myg1 in selective RNA processing. Localization of Myg1 to nucleolus and mitochondrial matrix was studied through imaging and confirmed by sub-cellular fractionation studies. We developed Silexoseqencing, a methodology to map the RNAse trail at single-nucleotide resolution, and identified in situ cleavage by Myg1 on specific transcripts in the two organelles. In nucleolus, Myg1 processes pre-ribosomal RNA involved in ribosome assembly and alters cytoplasmic translation. In mitochondrial matrix, Myg1 processes 3'-termini of the mito-ribosomal and messenger RNAs and controls translation of mitochondrial proteins. We provide a molecular link to the possible involvement of Myg1 in chronic depigmenting disorder vitiligo. Our study identifies a key component involved in regulating spatially segregated organellar RNA processing and establishes the evolutionarily conserved ribonuclease as a coordinator of nucleo-mitochondrial crosstalk.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Endorribonucleasas/metabolismo , Exonucleasas/metabolismo , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Control de Calidad , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Vitíligo/genética
8.
Adv Exp Med Biol ; 993: 425-452, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900927

RESUMEN

Store-operated Ca2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca2+ levels and transmits the message to plasma membrane Ca2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca2+ influx into the cells. This increase in cytosolic Ca2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Sistema Cardiovascular/metabolismo , Trastornos Hemostáticos/metabolismo , Moléculas de Interacción Estromal/metabolismo , Enfermedades Vasculares/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Humanos
9.
Am J Physiol Cell Physiol ; 309(7): C457-69, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26017146

RESUMEN

Calcium (Ca(2+)) regulates a plethora of cellular functions including hallmarks of cancer development such as cell cycle progression and cellular migration. Receptor-regulated calcium rise in nonexcitable cells occurs through store-dependent as well as store-independent Ca(2+) entry pathways. Stromal interaction molecules (STIM) and Orai proteins have been identified as critical constituents of both these Ca(2+) influx pathways. STIMs and Orais have emerged as targets for cancer therapeutics as their altered expression and function have been shown to contribute to tumorigenesis. Recent data demonstrate that they play a vital role in development and metastasis of a variety of tumor types including breast, prostate, cervical, colorectal, brain, and skin tumors. In this review, we will retrospect the data supporting a key role for STIM1, STIM2, Orai1, and Orai3 proteins in tumorigenesis and discuss the potential of targeting these proteins for cancer therapy.


Asunto(s)
Canales de Calcio/genética , Transformación Celular Neoplásica/patología , Proteínas de la Membrana/genética , Metástasis de la Neoplasia/patología , Proteínas de Neoplasias/genética , Neoplasias/patología , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Moléculas de Adhesión Celular/genética , Humanos , Metástasis de la Neoplasia/genética , Neoplasias/genética , Neoplasias/terapia , Proteína ORAI1 , Proteína ORAI2 , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2
10.
Circ Res ; 112(7): 1013-25, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23349245

RESUMEN

RATIONALE: Through largely unknown mechanisms, Ca(2+) signaling plays important roles in vascular smooth muscle cell (VSMC) remodeling. Orai1-encoded store-operated Ca(2+) entry has recently emerged as an important player in VSMC remodeling. However, the role of the exclusively mammalian Orai3 protein in native VSMC Ca(2+) entry pathways, its upregulation during VSMC remodeling, and its contribution to neointima formation remain unknown. OBJECTIVE: The goal of this study was to determine the agonist-evoked Ca(2+) entry pathway contributed by Orai3; Orai3 potential upregulation and role during neointima formation after balloon injury of rat carotid arteries. METHODS AND RESULTS: Ca(2+) imaging and patch-clamp recordings showed that although the platelet-derived growth factor activates the canonical Ca(2+) release-activated Ca(2+) channels via store depletion in VSMC, the pathophysiological agonist thrombin activates a distinct Ca(2+)-selective channel contributed by Orai1, Orai3, and stromal interacting molecule1 in the same cells. Unexpectedly, Ca(2+) store depletion is not required for activation of Orai1/3 channel by thrombin. Rather, the signal for Orai1/3 channel activation is cytosolic leukotrieneC4 produced downstream thrombin receptor stimulation through the catalytic activity of leukotrieneC4 synthase. Importantly, Orai3 is upregulated in an animal model of VSMC neointimal remodeling, and in vivo Orai3 knockdown inhibits neointima formation. CONCLUSIONS: These results demonstrate that distinct native Ca(2+)-selective Orai channels are activated by different agonists/pathways and uncover a mechanism whereby leukotrieneC4 acts through hitherto unknown intracrine mode to elicit store-independent Ca(2+) signaling that promotes vascular occlusive disease. Orai3 and Orai3-containing channels provide novel targets for control of VSMC remodeling during vascular injury or disease.


Asunto(s)
Canales de Calcio/fisiología , Traumatismos de las Arterias Carótidas/fisiopatología , Leucotrieno C4/metabolismo , Músculo Liso Vascular/fisiopatología , Neointima/fisiopatología , Angioplastia de Balón/efectos adversos , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Traumatismos de las Arterias Carótidas/etiología , Traumatismos de las Arterias Carótidas/patología , Citosol/metabolismo , Modelos Animales de Enfermedad , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Músculo Liso Vascular/patología , Neointima/etiología , Neointima/patología , Proteína ORAI1 , Técnicas de Placa-Clamp , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Molécula de Interacción Estromal 1 , Trombina/metabolismo , Trombina/farmacología
11.
FASEB J ; 27(1): 63-75, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22993197

RESUMEN

Store-operated Ca(2+) entry (SOCE) encoded by Orai1 proteins is a ubiquitous Ca(2+)-selective conductance involved in cellular proliferation and migration. We recently described up-regulation of Orai3 channels that selectively mediate SOCE in estrogen receptor α-expressing (ERα(+)) breast cancer cells. However, the connection between ERα and Orai3 and the role of Orai3 in tumorigenesis remain unknown. Here, we show that ERα knockdown decreases Orai3 mRNA (by ∼63%) and protein (by ∼44%) with no effect on Orai1. ERα knockdown decreases Orai3-mediated SOCE (by ∼43%) and the corresponding Ca(2+) release-activated Ca(2+) (CRAC) current (by ∼42%) in ERα(+) MCF7 cells. The abrogation of SOCE in MCF7 cells on ERα knockdown can be rescued by ectopic expression of Orai3. ERα activation increased Orai3 expression and SOCE in MCF7 cells. Epidermal growth factor (EGF) and thrombin stimulate Ca(2+) influx into MCF7 cells through Orai3. Orai3 knockdown inhibited SOCE-dependent phosphorylation of extracellular signal-regulated kinase (ERK1/2; by ∼44%) and focal adhesion kinase (FAK; by ∼46%) as well as transcriptional activity of nuclear factor for activated T cells (NFAT; by ∼49%). Significantly, Orai3 knockdown selectively decreased anchorage-independent growth (by ∼58%) and Matrigel invasion (by ∼44%) of ERα(+) MCF7 cells with no effect on ERα(-) MDA-MB231 cells. Moreover, Orai3 knockdown inhibited ERα(+) cell tumorigenesis in immunodeficient mice (∼66% reduction in tumor volume). These data establish Orai3 as an ERα-regulated channel and a potential selective therapeutic target for ERα(+) breast cancers.


Asunto(s)
Canales de Calcio/fisiología , Transformación Celular Neoplásica , Receptor alfa de Estrógeno/fisiología , Animales , Western Blotting , Femenino , Humanos , Células MCF-7 , Ratones , Ratones SCID , Fosforilación , Reacción en Cadena de la Polimerasa
12.
EMBO Mol Med ; 16(1): 185-217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177535

RESUMEN

Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Ratones , Virus de la Encefalitis Japonesa (Especie)/fisiología , Metotrimeprazina/farmacología , Metotrimeprazina/uso terapéutico , Enfermedades Neuroinflamatorias , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/patología , Antivirales/farmacología , Antivirales/uso terapéutico , Autofagia , Antiinflamatorios/uso terapéutico
13.
Pflugers Arch ; 465(9): 1249-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23515871

RESUMEN

The Ca(2+) sensor stromal interacting molecule 1 (STIM1) and the Ca(2+) channel Orai1 mediate the ubiquitous store-operated Ca(2+) entry (SOCE) pathway activated by depletion of internal Ca(2+) stores and mediated through the highly Ca(2+)-selective, Ca(2+) release-activated Ca(2+) (CRAC) current. Furthermore, STIM1 and Orai1, along with Orai3, encode store-independent Ca(2+) currents regulated by either arachidonate or its metabolite, leukotriene C4. Orai channels are emerging as important contributors to numerous cell functions, including proliferation, migration, differentiation, and apoptosis. Recent studies suggest critical involvement of STIM/Orai proteins in controlling the development of several cancers, including malignancies of the breast, prostate, and cervix. Here, we quantitatively compared the magnitude of SOCE and the expression levels of STIM1 and Orai1 in non-malignant human primary astrocytes (HPA) and in primary human cell lines established from surgical samples of the brain tumor glioblastoma multiforme (GBM). Using Ca(2+) imaging, patch-clamp electrophysiology, pharmacological reagents, and gene silencing, we established that in GBM cells, SOCE and CRAC are mediated by STIM1 and Orai1. We further found that GBM cells show upregulation of SOCE and increased Orai1 levels compared to HPA. The functional significance of SOCE was evaluated by studying the effects of STIM1 and Orai1 knockdown on cell proliferation and invasion. Utilizing Matrigel assays, we demonstrated that in GBM, but not in HPA, downregulation of STIM1 and Orai1 caused a dramatic decrease in cell invasion. In contrast, the effects of STIM1 and Orai1 knockdown on GBM cell proliferation were marginal. Overall, these results demonstrate that STIM1 and Orai1 encode SOCE and CRAC currents and control invasion of GBM cells. Our work further supports the potential use of channels contributed by Orai isoforms as therapeutic targets in cancer.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Glioblastoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Potenciales de Acción , Astrocitos/metabolismo , Neoplasias Encefálicas/patología , Calcio/metabolismo , Canales de Calcio/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Proteínas de la Membrana/genética , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteína ORAI1 , Molécula de Interacción Estromal 1 , Transcripción Genética , Regulación hacia Arriba
14.
Microcirculation ; 20(4): 330-6, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23312019

RESUMEN

Store-operated Ca²âº entry (SOCE) is a receptor-regulated Ca²âº entry pathway that is both ubiquitous and evolutionarily conserved. SOCE is activated by depletion of intracellular Ca²âº stores through receptor-mediated production of inositol 1,4,5-trisphosphate (IP3). The depletion of endoplasmic reticulum (ER) Ca²âº is sensed by stromal interaction molecule 1 (STIM1). On store depletion, STIM1 aggregates and moves to areas where the ER comes close to the plasma membrane (PM; within 25 nm) to interact with Orai1 channels and activate Ca²âº entry. Ca²âº entry through store-operated Ca²âº (SOC) channels, originally thought to mediate the replenishment of Ca²âº stores, participate in active downstream signaling by coupling to the activation of enzymes and transcription factors that control a wide variety of long-term cell functions such as proliferation, growth, and migration. SOCE has also been proposed to contribute to short-term cellular responses such as muscle contractility. While there are significant STIM1/Orai1 protein levels and SOCE activity in adult skeletal muscle, the precise role of SOCE in skeletal muscle contractility is not clear. The dependence on SOCE during cardiac and smooth muscle contractility is even less certain. Here, we will hypothesize on the contribution of SOCE in muscle and its potential role in contractility and signaling.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Proteína ORAI1 , Molécula de Interacción Estromal 1
15.
Bioconjug Chem ; 24(9): 1468-84, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23909664

RESUMEN

We have synthesized two series of bile acid tamoxifen conjugates using three bile acids lithocholic acid (LCA), deoxycholic acid (DCA), and cholic acid (CA). These bile acid-tamoxifen conjugates possess 1, 2, and 3 tamoxifen molecules attached to hydroxyl groups of bile acids having free acid and amine functionalities at the tail region of bile acids. The in vitro anticancer activities of these bile acid-tamoxifen conjugates show that the free amine headgroup based cholic acid-tamoxifen conjugate (CA-Tam3-Am) is the most potent anticancer conjugate as compared to the parent drug tamoxifen and other acid and amine headgroup based bile acid-tamoxifen conjugates. The cholic acid-tamoxifen conjugate (CA-Tam3-Am) bearing three tamoxifen molecules shows enhanced anticancer activities in both estrogen receptor +ve and estrogen receptor -ve breast cancer cell lines. The enhanced anticancer activity of CA-Tam3-Am is due to more favorable irreversible electrostatic interactions followed by intercalation of these conjugates in hydrophobic core of membrane lipids causing increase in membrane fluidity. Annexin-FITC based FACS analysis showed that cells undergo apoptosis, and cell cycle analysis showed the arrest of cells in sub G0 phase. ROS assays showed a high amount of generation of ROS independent of ER status of the cell line indicating changes in mitochondrial membrane fluidity upon the uptake of the conjugate that further leads to the release of cytochrome c, a direct and indirect regulator of ROS. The mechanistic studies for apoptosis using PCR and western analysis showed apoptotsis by intrinsic and extrinsic pathways in ER +ve MCF-7 cells and by only an intrinsic pathway in ER -ve cells. In vivo studies in the 4T1 tumor model showed that CA-Tam3-Am is more potent than tamoxifen. These studies showed that bile acids provide a new scaffold for high drug loading and that their anticancer activities strongly depend on charge and hydrophobicity of lipid-drug conjugates.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Tamoxifeno/análogos & derivados , Animales , Antineoplásicos/farmacología , Ácidos y Sales Biliares/farmacología , Mama/efectos de los fármacos , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Diseño de Fármacos , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Tamoxifeno/química , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
16.
Circ Res ; 109(5): 534-42, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21737791

RESUMEN

RATIONALE: The molecular correlate of the calcium release-activated calcium current (I(CRAC)), the channel protein Orai1, is upregulated in proliferative vascular smooth muscle cells (VSMC). However, the role of Orai1 in vascular disease remains largely unknown. OBJECTIVE: The goal of this study was to determine the role of Orai1 in neointima formation after balloon injury of rat carotid arteries and its potential upregulation in a mouse model of VSMC remodeling. METHODS AND RESULTS: Lentiviral particles encoding short-hairpin RNA (shRNA) targeting either Orai1 (shOrai1) or STIM1 (shSTIM1) caused knockdown of their respective target mRNA and proteins and abrogated store-operated calcium entry and I(CRAC) in VSMC; control shRNA was targeted to luciferase (shLuciferase). Balloon injury of rat carotid arteries upregulated protein expression of Orai1, STIM1, and calcium-calmodulin kinase IIdelta2 (CamKIIδ2); increased proliferation assessed by Ki67 and PCNA and decreased protein expression of myosin heavy chain in medial and neointimal VSMC. Incubation of the injured vessel with shOrai1 prevented Orai1, STIM1, and CamKIIδ2 upregulation in the media and neointima; inhibited cell proliferation and markedly reduced neointima formation 14 days post injury; similar results were obtained with shSTIM1. VSMC Orai1 and STIM1 knockdown inhibited nuclear factor for activated T-cell (NFAT) nuclear translocation and activity. Furthermore, Orai1 and STIM1 were upregulated in mice carotid arteries subjected to ligation. CONCLUSIONS: Orai1 is upregulated in VSMC during vascular injury and is required for NFAT activity, VSMC proliferation, and neointima formation following balloon injury of rat carotids. Orai1 provides a novel target for control of VSMC remodeling during vascular injury or disease.


Asunto(s)
Canales de Calcio/fisiología , Neointima/metabolismo , Neointima/patología , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Animales , Cateterismo/efectos adversos , Proliferación Celular , Células Cultivadas , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Neointima/genética , Proteína ORAI1 , Ratas , Ratas Sprague-Dawley , Lesiones del Sistema Vascular/genética
17.
Cell Calcium ; 111: 102705, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36841139

RESUMEN

Pigmentation is a complex physiological phenomenon that protects from UV induced damage. Perturbations in pigmentation pathways lead to pigmentary disorders such as vitiligo, albinism and Darier...s disease. Emerging literature implicates a critical role of ionic homeostasis and pH in regulating pigmentation. In a recent study, Wang et al. identified a novel gain of function mutation in a non-selective cation channel "Two Pore Channel 2" (TPC2) that is responsible for albinism in a human patient. The authors demonstrate that this mutation leads to constitutive activation of TPC2 thereby modulating cellular calcium dynamics and inducing changes in the lysosomal pH. Further, authors generated a knock in mice with homologous TPC2 mutation and corroborated a causative role for this mutation in albinism. It is an exciting study that reports a novel TPC2 mutation, which is responsible for albinism in an autosomal dominant inheritance fashion. Since TPC2 is localized on melanosomes as well, going forward it would be interesting to investigate the role of this mutation on melanosomal calcium dynamics and alterations in melanosomal pH.


Asunto(s)
Calcio , Mutación con Ganancia de Función , Humanos , Animales , Ratones , Calcio/metabolismo , Pigmentación/genética , Homeostasis , Concentración de Iones de Hidrógeno
18.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292659

RESUMEN

Mitochondria are versatile organelles that regulate several physiological functions. Many mitochondria-controlled processes are driven by mitochondrial Ca2+ signaling. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake. In vitro gain and loss of function studies demonstrated that Mitochondrial Ca2+ Uniporter (MCU) is crucial for melanogenesis while the MCU rheostats, MCUb and MICU1 negatively control melanogenesis. Zebrafish and mouse models showed that MCU plays a vital role in pigmentation in vivo. Mechanistically, MCU controls activation of transcription factor NFAT2 to induce expression of three keratins (keratin 5, 7 and 8), which we report as positive regulators of melanogenesis. Interestingly, keratin 5 in turn modulates mitochondrial Ca2+ uptake thereby this signaling module acts as a negative feedback loop that fine-tunes both mitochondrial Ca2+ signaling and melanogenesis. Mitoxantrone, an FDA approved drug that inhibits MCU, decreases physiological melanogenesis. Collectively, our data demonstrates a critical role for mitochondrial Ca2+ signaling in vertebrate pigmentation and reveal the therapeutic potential of targeting MCU for clinical management of pigmentary disorders. Given the centrality of mitochondrial Ca2+ signaling and keratin filaments in cellular physiology, this feedback loop may be functional in a variety of other pathophysiological conditions.

19.
Pflugers Arch ; 464(5): 481-92, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23014880

RESUMEN

Airway smooth muscle cell (ASMC) remodeling contributes to the structural changes in the airways that are central to the clinical manifestations of asthma. Ca(2+) signals play an important role in ASMC remodeling through control of ASMC migration and hypertrophy/proliferation. Upregulation of STIM1 and Orai1 proteins, the molecular components of the store-operated Ca(2+) entry (SOCE) pathway, has recently emerged as an important mediator of vascular remodeling. However, the potential upregulation of STIM1 and Orai1 in asthmatic airways remains unknown. An important smooth muscle migratory agonist with major contributions to ASMC remodeling is the platelet-derived growth factor (PDGF). Nevertheless, the Ca(2+) entry route activated by PDGF in ASMC remains elusive. Here, we show that STIM1 and Orai1 protein levels are greatly upregulated in ASMC isolated from ovalbumin-challenged asthmatic mice, compared to control mice. Furthermore, we show that PDGF activates a Ca(2+) entry pathway in rat primary ASMC that is pharmacologically reminiscent of SOCE. Molecular knockdown of STIM1 and Orai1 proteins inhibited PDGF-activated Ca(2+) entry in these cells. Whole-cell patch clamp recordings revealed the activation of Ca(2+) release-activated Ca(2+) (CRAC) current by PDGF in ASMC. These CRAC currents were abrogated upon either STIM1 or Orai1 knockdown. We show that either STIM1 or Orai1 knockdown significantly inhibited ASMC proliferation and chemotactic migration in response to PDGF. These results implicate STIM1 and Orai1 in PDGF-induced ASMC proliferation and migration and suggest the potential use of STIM1 and Orai1 as targets for ASMC remodeling during asthma.


Asunto(s)
Asma/metabolismo , Asma/fisiopatología , Canales de Calcio/metabolismo , Señalización del Calcio , Glicoproteínas de Membrana/metabolismo , Miocitos del Músculo Liso/fisiología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Animales , Asma/inducido químicamente , Calcio/metabolismo , Canales de Calcio/genética , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Masculino , Glicoproteínas de Membrana/genética , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1 , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Molécula de Interacción Estromal 1 , Tráquea/citología , Regulación hacia Arriba
20.
Cell Calcium ; 106: 102637, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35986958

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection and associated coronavirus disease 2019 (COVID-19) has severely impacted human well-being. Although vaccination programs have helped in reducing the severity of the disease, drug regimens for clinical management of COVID-19 are not well recognized yet. It is therefore important to identify and characterize the molecular pathways that could be therapeutically targeted to halt SARS-CoV-2 infection and COVID-19 pathogenesis. SARS-CoV-2 hijacks host cell molecular machinery for its entry, replication and egress. Interestingly, SARS-CoV-2 interacts with host cell Calcium (Ca2+) handling proteins and perturbs Ca2+ homeostasis. We here systematically review the literature that demonstrates a critical role of host cell Ca2+ dynamics in regulating SARS-CoV-2 infection and COVID-19 pathogenesis. Further, we discuss recent studies, which have reported that SARS-CoV-2 acts on several organelle-specific Ca2+ transport mechanisms. Moreover, we deliberate upon the possibility of curtailing SARS-CoV-2 infection by targeting host cell Ca2+ handling machinery. Importantly, we delve into the clinical trials that are examining the efficacy of FDA-approved small molecules acting on Ca2+ handling machinery for the management of COVID-19. Although an important role of host cell Ca2+ signaling in driving SARS-CoV-2 infection has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be important to investigate in detail the signaling cascades that connect perturbed Ca2+ dynamics to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Calcio/metabolismo , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA