Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 144(2): 345-355, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993986

RESUMEN

Here, we describe an optogenetic gene expression system optimized for use in zebrafish. This system overcomes the limitations of current inducible expression systems by enabling robust spatial and temporal regulation of gene expression in living organisms. Because existing optogenetic systems show toxicity in zebrafish, we re-engineered the blue-light-activated EL222 system for minimal toxicity while exhibiting a large range of induction, fine spatial precision and rapid kinetics. We validate several strategies to spatially restrict illumination and thus gene induction with our new TAEL (TA4-EL222) system. As a functional example, we show that TAEL is able to induce ectopic endodermal cells in the presumptive ectoderm via targeted sox32 induction. We also demonstrate that TAEL can be used to resolve multiple roles of Nodal signaling at different stages of embryonic development. Finally, we show how inducible gene editing can be achieved by combining the TAEL and CRISPR/Cas9 systems. This toolkit should be a broadly useful resource for the fish community.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Luz , Optogenética/métodos , Pez Cebra , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Calibración , Embrión no Mamífero , Genes Reporteros/efectos de la radiación , Optogenética/normas , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Pez Cebra/embriología , Pez Cebra/genética
2.
Mol Cell ; 40(6): 855-8, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21172650

RESUMEN

The dynamic protein interactions required for transcription are functionally important yet poorly understood; in this issue of Molecular Cell, Zobeck et al. (2010) resolve the sequential recruitment and selective recycling of transcription factors at an actively transcribing locus in Drosophila.

3.
Mol Cell ; 37(2): 223-34, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122404

RESUMEN

Splicing regulatory proteins often have distinct activities when bound to exons versus introns. However, less clear is whether variables aside from location can influence activity. HnRNP L binds to a motif present in both CD45 variable exons 4 and 5 to affect their coordinate repression. Here, we show that, in contrast to its direct repression of exon 4, hnRNP L represses exon 5 by countering the activity of a neighboring splicing enhancer. In the absence of the enhancer, hnRNP L unexpectedly activates exon inclusion. As the splice sites flanking exon 4 and 5 are distinct, we directly examined the effect of varying splice site strength on the mechanism of hnRNP L function. Remarkably, binding of hnRNP L to an exon represses strong splice sites but enhances weak splice sites. A model in which hnRNP L stabilizes snRNP binding can explain both effects in a manner determined by the inherent snRNP-substrate affinity.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo L/fisiología , Modelos Genéticos , Exones , Humanos , Antígenos Comunes de Leucocito/química , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/metabolismo , Sitios de Empalme de ARN , Empalme del ARN
4.
Nat Chem Biol ; 10(3): 196-202, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24413462

RESUMEN

Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.


Asunto(s)
Factores de Transcripción Activadores/efectos de la radiación , Proteínas Bacterianas/genética , Expresión Génica/genética , Luz , Optogenética , Animales , Línea Celular , Cinética , Modelos Biológicos , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Linfocitos T/metabolismo , Pez Cebra/genética
5.
Biochemistry ; 52(38): 6653-61, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23992349

RESUMEN

With their utilization of light-driven allostery to control biochemical activities, photosensory proteins are of great interest as model systems and novel reagents for use by the basic science and engineering communities. One such protein, the light-activated EL222 transcription factor, from the marine bacterium Erythrobacter litoralis HTCC2594, is appealing for such studies, as it harnesses blue light to drive the reorientation of light-oxygen-voltage (LOV) sensory and helix-turn-helix (HTH) effector domains to allow photoactivation of gene transcription in natural and artificial systems. The protein conformational changes required for this process are not well understood, in part because of the relatively short lifetime of the EL222 photoexcited state (τ ∼ 29 s), which complicates its characterization via certain biophysical methods. Here we report how we have circumvented this limitation by creating an EL222 variant harboring V41I, L52I, A79Q, and V121I point mutations (AQTrip) that stabilizes the photoactivated state. Using the wild-type and AQTrip EL222 proteins, we have probed EL222 activation using a combination of solution scattering, nuclear magnetic resonance (NMR), and electromobility shift assays. Size-exclusion chromatography and light scattering indicate that AQTrip oligomerizes in the absence of DNA and selects for an EL222 dimer-DNA complex in the presence of DNA substrates. These results are confirmed in wild-type EL222 with a high-affinity DNA-binding site that stabilizes the complex. NMR analyses of the EL222-DNA complex confirm a 2:1 stoichiometry in the presence of a previously characterized DNA substrate. Combined, these novel approaches have validated a key mechanistic step, whereby blue light induces EL222 dimerization through LOV and HTH interfaces.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Alphaproteobacteria/química , Alphaproteobacteria/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Dominio Catalítico , Cromatografía en Gel , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/efectos de la radiación , Luz , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , Estructura Terciaria de Proteína , Dispersión de Radiación , Factores de Transcripción/genética , Factores de Transcripción/efectos de la radiación
6.
Biochemistry ; 51(50): 10024-34, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23205774

RESUMEN

Light-oxygen-voltage (LOV) domains serve as the photosensory modules for a wide range of plant and bacterial proteins, conferring blue light-dependent regulation to effector activities as diverse as enzymes and DNA binding. LOV domains can also be engineered into a variety of exogenous targets, allowing similar regulation for new protein-based reagents. Common to these proteins is the ability for LOV domains to reversibly form a photochemical adduct between an internal flavin chromophore and the surrounding protein, using this to trigger conformational changes that affect output activity. Using the Erythrobacter litoralis protein EL222 model system that links LOV regulation to a helix-turn-helix (HTH) DNA binding domain, we demonstrated that the LOV domain binds and inhibits the HTH domain in the dark, releasing these interactions upon illumination [Nash, A. I., et al. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 9449-9454]. Here we combine genomic and in vitro selection approaches to identify optimal DNA binding sites for EL222. Within the bacterial host, we observe binding at several genomic sites using a 12 bp sequence consensus that is also found by in vitro selection methods. Sequence-specific alterations in the DNA consensus reduce EL222 binding affinity in a manner consistent with the expected binding mode, a protein dimer binding to two repeats. Finally, we demonstrate the light-dependent activation of transcription of two genes adjacent to an EL222 binding site. Taken together, these results shed light on the native function of EL222 and provide useful reagents for further basic and applications research of this versatile protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Secuencias Hélice-Giro-Hélice , Unión Proteica/efectos de la radiación , Factores de Transcripción Activadores/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , ADN/metabolismo , Mononucleótido de Flavina/química , Luz , Técnica SELEX de Producción de Aptámeros
7.
J Biol Chem ; 286(22): 20043-53, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21507955

RESUMEN

Alternative splicing is typically controlled by complexes of regulatory proteins that bind to sequences within or flanking variable exons. The identification of regulatory sequence motifs and the characterization of sequence motifs bound by splicing regulatory proteins have been essential to predicting splicing regulation. The activation-responsive sequence (ARS) motif has previously been identified in several exons that undergo changes in splicing upon T cell activation. hnRNP L binds to this ARS motif and regulates ARS-containing exons; however, hnRNP L does not function alone. Interestingly, the proteins that bind together with hnRNP L differ for different exons that contain the ARS core motif. Here we undertake a systematic mutational analysis of the best characterized context of the ARS motif, namely the ESS1 sequence from CD45 exon 4, to understand the determinants of binding specificity among the components of the ESS1 regulatory complex and the relationship between protein binding and function. We demonstrate that different mutations within the ARS motif affect specific aspects of regulatory function and disrupt the binding of distinct proteins. Most notably, we demonstrate that the C77G polymorphism, which correlates with autoimmune disease susceptibility in humans, disrupts exon silencing by preventing the redundant activity of hnRNPs K and E2 to compensate for the weakened function of hnRNP L. Therefore, these studies provide an important example of the functional relevance of combinatorial function in splicing regulation and suggest that additional polymorphisms may similarly disrupt function of the ESS1 silencer.


Asunto(s)
Empalme Alternativo/genética , Enfermedades Autoinmunes , Enfermedades Genéticas Congénitas , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Antígenos Comunes de Leucocito , Polimorfismo de Nucleótido Simple , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Línea Celular , Exones/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Antígenos Comunes de Leucocito/biosíntesis , Antígenos Comunes de Leucocito/genética , Activación de Linfocitos/genética , Mutación , Elementos Silenciadores Transcripcionales/genética , Linfocitos T/metabolismo
8.
Zebrafish ; 18(1): 20-28, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33555975

RESUMEN

Inducible gene expression systems are valuable tools for studying biological processes. We previously developed an optogenetic gene expression system called TAEL that is optimized for use in zebrafish. When illuminated with blue light, TAEL transcription factors dimerize and activate gene expression downstream of the TAEL-responsive C120 promoter. By using light as the inducing agent, the TAEL/C120 system overcomes limitations of traditional inducible expression systems by enabling fine spatial and temporal regulation of gene expression. In this study, we describe ongoing efforts to improve the TAEL/C120 system. We made modifications to both the TAEL transcriptional activator and the C120 regulatory element, collectively referred to as TAEL 2.0. We demonstrate that TAEL 2.0 consistently induces higher levels of reporter gene expression and at a faster rate, but with comparable background and toxicity as the original TAEL system. With these improvements, we were able to create functional stable transgenic lines to express the TAEL 2.0 transcription factor either ubiquitously or with a tissue-specific promoter. We demonstrate that the ubiquitous line in particular can be used to induce expression at late embryonic and larval stages, addressing a major deficiency of the original TAEL system. This improved optogenetic expression system will be a broadly useful resource for the zebrafish community.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Luz , Optogenética/métodos , Pez Cebra , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Embrión no Mamífero , Genes Reporteros/efectos de la radiación , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Pez Cebra/embriología , Pez Cebra/genética
9.
PLoS One ; 9(9): e106828, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25197824

RESUMEN

Synthesis of compound libraries and their concurrent assessment as selective reagents for probing and modulating biological function continues to be an active area of chemical biology. Microwave-assisted solid-phase Dötz benzannulation reactions have been used to inexpensively synthesize 2, 3-disubstituted-1, 4-naphthoquinone derivatives. Herein, we report the biological testing of a small library of such compounds using a murine fibroblast cell line (L929). Assessment of cellular viability identified three categories of cytotoxic compounds: no toxicity, low/intermediate toxicity and high toxicity. Increased levels of Annexin-V-positive staining and of caspase 3 activity confirmed that low, intermediate, and highly toxic compounds promote cell death. The compounds varied in their ability to induce mitochondrial depolarization and formation of reactive oxygen species (ROS). Both cytotoxic and non-cytotoxic compounds triggered mitochondrial depolarization, while one highly cytotoxic compound did not. In addition, all cytotoxic compounds promoted increased intracellular ROS but the cells were only partially protected from compound-induced apoptosis when in the presence of superoxide dismutase, catalase, or ascorbic acid suggesting utilization of additional pro-death mechanisms. In summary, nine of twelve (75%) 1, 4-naphthoquinone synthetic compounds were cytotoxic. Although the mitochondria did not appear to be a central target for induction of cell death, all of the cytotoxic compounds induced ROS formation. Thus, the data demonstrate that the synthesis regime effectively created cytotoxic compounds highlighting the potential use of the regime and its products for the identification of biologically relevant reagents.


Asunto(s)
Muerte Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Bibliotecas de Moléculas Pequeñas , Animales , Caspasa 3/metabolismo , Catalasa/metabolismo , Activación Enzimática , Fibroblastos/metabolismo , Ratones , Naftoquinonas/química , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA