Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Bot ; 110(1): e16102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36371783

RESUMEN

PREMISE: Root-sprouting (RS) is an evolutionarily independent alternative to axillary stem branching for a plant to attain its architecture. Root-sprouting plants are better adapted to disturbance than non-RS plants, and their vigor is frequently boosted by biomass removal. Nevertheless, RS plants are rarer than plants that are not root-sprouters, possibly because they must overcome developmental barriers such as intrinsic phytohormonal balance or because RS ability is conditioned by injury to the plant body. The objective of this study was to identify whether phytohormones or injury enable RS. METHODS: In a greenhouse experiment, growth variables, root respiration, and phytohormones were analyzed in two closely related clonal herbs that differ in RS ability (spontaneously RS Inula britannica and rhizomatous non-RS I. salicina) with and without severe biomass removal. RESULTS: As previously reported, I. britannica is a root-sprouter, but injury did not boost its RS ability. Root respiration did not differ between the two species and decreased continuously with time irrespectively of injury, but their phytohormone profiles differed significantly. In RS species, the auxins-to-cytokinins ratio was low, and injury further decreased it. CONCLUSIONS: This first attempt to test drivers behind different plant growth forms suggests that intrinsic phytohormone regulation, especially the auxins-to-cytokinins ratio, might be behind RS ability. Injury, causing a phytohormonal imbalance, seems to be less important in spontaneously RS species than expected for RS species in general.


Asunto(s)
Citocininas , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Citocininas/fisiología , Ácidos Indolacéticos , Desarrollo de la Planta , Plantas , Raíces de Plantas
2.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445260

RESUMEN

De novo shoot organogenesis (DNSO) is a procedure commonly used for the in vitro regeneration of shoots from a variety of plant tissues. Shoot regeneration occurs on nutrient media supplemented with the plant hormones cytokinin (CK) and auxin, which play essential roles in this process, and genes involved in their signaling cascades act as master regulators of the different phases of shoot regeneration. In the last 20 years, the genetic regulation of DNSO has been characterized in detail. However, as of today, the CK and auxin signaling events associated with shoot regeneration are often interpreted as a consequence of these hormones simply being present in the regeneration media, whereas the roles for their prior uptake and transport into the cultivated plant tissues are generally overlooked. Additionally, sucrose, commonly added to the regeneration media as a carbon source, plays a signaling role and has been recently shown to interact with CK and auxin and to affect the efficiency of shoot regeneration. In this review, we provide an integrative interpretation of the roles for CK and auxin in the process of DNSO, adding emphasis on their uptake from the regeneration media and their interaction with sucrose present in the media to their complex signaling outputs that mediate shoot regeneration.


Asunto(s)
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Organogénesis de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/citología
3.
Fungal Genet Biol ; 143: 103436, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32693088

RESUMEN

We have previously shown that the maize pathogen Colletotrichum graminicola is able to synthesise cytokinins (CKs). However, it remained unsettled whether fungal CK production is essential for virulence in this hemibiotrophic fungus. Here, we identified a candidate gene, CgIPT1, that is homologous to MOD5 of Saccharomyces cerevisiae and genes from other fungi and plants, which encode tRNA-isopentenyltransferases (IPTs). We show that the wild type strain mainly synthesises cis-zeatin-type (cisZ) CKs whereas ΔCgipt1 mutants are severely impeded to do so. The spectrum of CKs produced confirms bioinformatical analyses predicting that CgIpt1 is a tRNA-IPT. The virulence of the ΔCgipt1 mutants is moderately reduced. Furthermore, the mutants exhibit increased sensitivities to osmotic stress imposed by sugar alcohols and salts, as well as cell wall stress imposed by Congo red. Amendment of media with CKs did not reverse this phenotype suggesting that fungal-derived CKs do not explain the role of CgIpt1 in mediating abiotic stress tolerance. Moreover, the mutants still cause green islands on senescing maize leaves indicating that the cisZ-type CKs produced by the fungus do not cause this phenotype.


Asunto(s)
Transferasas Alquil y Aril/genética , Colletotrichum/genética , Citocininas/biosíntesis , Estrés Fisiológico/genética , Colletotrichum/patogenicidad , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Virulencia/genética , Zea mays/microbiología , Zeatina/biosíntesis , Zeatina/genética
4.
New Phytol ; 225(6): 2423-2438, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31682013

RESUMEN

The diversity of cytokinin (CK) metabolites suggests their interconversions are the predominant regulatory mechanism of CK action. Nevertheless, little is known about their directionality and kinetics in planta. CK metabolite levels were measured in 2-wk-old Arabidopsis thaliana plants at several time points up to 100 min following exogenous application of selected CKs. The data were then evaluated qualitatively and by mathematical modeling. Apart from elevated levels of trans-zeatin (tZ) metabolites upon application of N6 -(Δ2 -isopentenyl)adenine (iP), we observed no conversions between the individual CK-types - iP, tZ, dihydrozeatin (DHZ) and cis-zeatin (cZ). In particular, there was no sign of isomerization between tZ and cZ families. Also, no increase of DHZ-type CKs was observed after application of tZ, suggesting low baseline activity of zeatin reductase. Among N-glucosides, those of iP were not converted back to iP while tZ N-glucosides were cleaved to tZ bases, thus affecting the whole metabolic spectrum. We present the first large-scale study of short-term CK metabolism kinetics and show that tZ N7- and N9-glucosides are metabolized in vivo. We thus refute the generally accepted hypothesis that N-glucosylation irreversibly inactivates CKs. The subsequently constructed mathematical model provides estimates of the metabolic conversion rates.


Asunto(s)
Arabidopsis , Citocininas , Glucósidos , Isopenteniladenosina , Zeatina
5.
Int J Mol Sci ; 20(4)2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30791522

RESUMEN

The international symposium "Auxins and Cytokinins in Plant Development" (ACPD), which is held every 4⁻5 years in Prague, Czech Republic, is a meeting of scientists interested in the elucidation of the action of two important plant hormones-auxins and cytokinins. It is organized by a group of researchers from the Laboratory of Hormonal Regulations in Plants at the Institute of Experimental Botany, the Czech Academy of Sciences. The symposia already have a long tradition, having started in 1972. Thanks to the central role of auxins and cytokinins in plant development, the ACPD 2018 symposium was again attended by numerous experts who presented their results in the opening, two plenary lectures, and six regular sessions, including two poster sessions. Due to the open character of the research community, which is traditionally very well displayed during the meeting, a lot of unpublished data were presented and discussed. In this report, we summarize the contributions in individual sessions that attracted our attention.


Asunto(s)
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Transporte Biológico , Ambiente , Redes y Vías Metabólicas , Transducción de Señal
6.
J Exp Bot ; 69(3): 441-454, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29294075

RESUMEN

Cytokinins comprise a group of phytohormones with an organ-specific mode of action. Although the mechanisms controlling the complex networks of cytokinin metabolism are partially known, the role of individual cytokinin types in the maintenance of cytokinin homeostasis remains unclear. Utilizing the overproduction of single-chain Fv antibodies selected for their ability to bind trans-zeatin riboside and targeted to the endoplasmic reticulum, we post-synthetically modulated cytokinin ribosides, the proposed transport forms of cytokinins. We observed asymmetric activity of cytokinin biosynthetic genes and cytokinin distribution in wild-type tobacco seedlings with higher cytokinin abundance in the root than in the shoot. Antibody-mediated modulation of cytokinin ribosides further enhanced the relative cytokinin abundance in the roots and induced cytokinin-related phenotypes in an organ-specific manner. The activity of cytokinin oxidase/dehydrogenase in the roots was strongly up-regulated in response to antibody-mediated formation of the cytokinin pool in the endoplasmic reticulum. However, we only detected a slight decrease in the root cytokinin levels. In contrast, a significant decrease of cytokinins occurred in the shoot. We suggest the roots as the main site of cytokinin biosynthesis in tobacco seedlings. Conversely, cytokinin levels in the shoot seem to depend largely on long-range transport of cytokinin ribosides from the root and their subsequent metabolic activation.


Asunto(s)
Citocininas/fisiología , Homeostasis , Isopenteniladenosina/análogos & derivados , Nicotiana/fisiología , Fenotipo , Reguladores del Crecimiento de las Plantas/fisiología , Isopenteniladenosina/metabolismo , Planticuerpos/fisiología , Plantones/fisiología
7.
Ann Bot ; 119(1): 151-166, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27707748

RESUMEN

BACKGROUND AND AIMS: The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [3H]trans-zeatin (transZ) and auxin ([3H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. METHODS: Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [3H]transZ and [3H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. KEY RESULTS: The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [3H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both phytohormones in algal growth and cell division. CONCLUSIONS: Our data suggest the existence and functioning of a complex network of metabolic pathways and activity control of CKs and auxins in cyanobacteria and algae that apparently differ from those in vascular plants.


Asunto(s)
Chlorophyta/metabolismo , Cianobacterias/metabolismo , Citocininas/metabolismo , Homeostasis/fisiología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Streptophyta/metabolismo , Chlorophyta/química , Chlorophyta/fisiología , Cromatografía Líquida de Alta Presión/métodos , Cianobacterias/química , Cianobacterias/fisiología , Citocininas/análisis , Ácidos Indolacéticos/análisis , Filogenia , Reguladores del Crecimiento de las Plantas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Streptophyta/química , Streptophyta/fisiología , Espectrometría de Masas en Tándem/métodos
8.
Plant Cell Environ ; 39(1): 62-79, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26082265

RESUMEN

To counter environmental cues, cultivated tomato (Solanum lycopersicum L.) has evolved adaptive mechanisms requiring regulation of downstream genes. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors regulate abiotic stresses responses in plants. Herein, we isolated a novel DREB2-type regulator involved in salinity response, named SlDREB2. Spatio-temporal expression profile together with investigation of its promoter activity indicated that SlDREB2 is expressed during early stages of seedling establishment and in various vegetative and reproductive organs of adult plants. SlDREB2 is up-regulated in roots and young leaves following exposure to NaCl, but is also induced by KCl and drought. Its overexpression in WT Arabidopsis and atdreb2a mutants improved seed germination and plant growth in presence of different osmotica. In tomato, SlDREB2 affected vegetative and reproductive organs development and the intronic sequence present in the 5' UTR drives its expression. Physiological, biochemical and transcriptomic analyses showed that SlDREB2 enhanced plant tolerance to salinity by improvement of K(+) /Na(+) ratio, and proline and polyamines biosynthesis. Exogenous hormonal treatments (abscisic acid, auxin and cytokinins) and analysis of WT and 35S::SlDREB2 tomatoes hormonal contents highlighted SlDREB2 involvement in abscisic acid biosynthesis/signalling. Altogether, our results provide an overview of SlDREB2 mode of action during early salt stress response.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo , Transcriptoma , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/fisiología , Secuencia de Bases , Deshidratación , Sequías , Perfilación de la Expresión Génica , Solanum lycopersicum/fisiología , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ADN , Cloruro de Sodio/farmacología , Estrés Fisiológico , Factores de Transcripción/genética
9.
BMC Plant Biol ; 15: 85, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25888402

RESUMEN

BACKGROUND: Cytokinins (CKs) are involved in response to various environmental cues, including salinity. It has been previously reported that enhancing CK contents improved salt stress tolerance in tomato. However, the underlying mechanisms of CK metabolism and signaling under salt stress conditions remain to be deciphered. RESULTS: Two tomato isopentenyltransferases, SlIPT3 and SlIPT4, were characterized in tomato and Arabidopsis. Both proteins displayed isopentenyltransferase (IPT) activity in vitro, while their encoding genes exhibited different spatio-temporal expression patterns during tomato plant development. SlIPT3 and SlIPT4 were affected by the endogenous CK status, tightly connected with CKs feedback regulation, as revealed by hormonal treatements. In response to salt stress, SlIPT3 and SlIPT4 were strongly repressed in tomato roots, and differently affected in young and old leaves. SlIPT3 overexpression in tomato resulted in high accumulation of different CK metabolites, following modifications of CK biosynthesis-, signaling- and degradation-gene expression. In addition, 35S::SlIPT3 tomato plants displayed improved tolerance to salinity consecutive to photosynthetic pigments and K(+)/Na(+) ratio retention. Involvement of SlIPT3 and SlIPT4 in salt stress response was also observed in Arabidopsis ipt3 knock-out complemented plants, through maintenance of CK homeostasis. CONCLUSIONS: SlIPT3 and SlIPT4 are functional IPTs encoded by differently expressed genes, distinctively taking part in the salinity response. The substantial participation of SlIPT3 in CK metabolism during salt stress has been determined in 35S::SlIPT3 tomato transformants, where enhancement of CKs accumulation significantly improved plant tolerance to salinity, underlining the importance of this phytohormone in stress response.


Asunto(s)
Transferasas Alquil y Aril/fisiología , Arabidopsis/fisiología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal , Solanum lycopersicum/enzimología , Solanum lycopersicum/fisiología , Transferasas Alquil y Aril/genética , Arabidopsis/genética , Solanum lycopersicum/embriología , Solanum lycopersicum/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología
10.
Plant Physiol ; 164(4): 1967-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24567191

RESUMEN

The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Plantas/metabolismo , Proteínas Represoras/metabolismo , Tolerancia a la Sal , Solanum lycopersicum/fisiología , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hidroponía , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Presión Osmótica , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poliaminas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Transducción de Señal , Cloruro de Sodio/farmacología , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
New Phytol ; 201(2): 585-598, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24124900

RESUMEN

We characterized the molecular function of the Pseudomonas syringae pv. tomato DC3000 (Pto) effector HopQ1. In silico studies suggest that HopQ1 might possess nucleoside hydrolase activity based on the presence of a characteristic aspartate motif. Transgenic Arabidopsis lines expressing HopQ1 or HopQ1 aspartate mutant variants were characterized with respect to flagellin triggered immunity, phenotype and changes in phytohormone content by high-performance liquid chromatography-MS (HPLC-MS). We found that HopQ1, but not its aspartate mutants, suppressed all tested immunity marker assays. Suppression of immunity was the result of a lack of the flagellin receptor FLS2, whose gene expression was abolished by HopQ1 in a promoter-dependent manner. Furthermore, HopQ1 induced cytokinin signaling in Arabidopsis and the elevation in cytokinin signaling appears to be responsible for the attenuation of FLS2 expression. We conclude that HopQ1 can activate cytokinin signaling and that moderate activation of cytokinin signaling leads to suppression of FLS2 accumulation and thus defense signaling.


Asunto(s)
Arabidopsis/inmunología , Proteínas Bacterianas/fisiología , Citocininas/metabolismo , Resistencia a la Enfermedad , Pseudomonas syringae/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Citocininas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/metabolismo , Pseudomonas syringae/genética , Transducción de Señal
12.
J Exp Bot ; 65(9): 2243-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24659487

RESUMEN

Four B-class MADS box genes specify petal and stamen organ identities in tomato. Several homeotic mutants affected in petal and stamen development were described in this model species, although the causal mutations have not been identified for most of them. In this study we characterized a strong stamenless mutant in the tomato Primabel cultivar (sl-Pr), which exhibited homeotic conversion of petals into sepals and stamens into carpels and we compared it with the stamenless mutant in the LA0269 accession (sl-LA0269). Genetic complementation analysis proved that both sl mutants were allelic. Sequencing revealed point mutations in the coding sequence of the Tomato APETALA3 (TAP3) gene of the sl-Pr genome, which lead to a truncated protein, whereas a chromosomal rearrangement in the TAP3 promoter was detected in the sl-LA0269 allele. Moreover, the floral phenotype of TAP3 antisense plants exhibited identical homeotic changes to sl mutants. These results demonstrate that SL is the tomato AP3 orthologue and that the mutant phenotype correlated to the SL silencing level. Expression analyses showed that the sl-Pr mutation does not affect the expression of other tomato B-class genes, although SL may repress the A-class gene MACROCALYX. A partial reversion of the sl phenotype by gibberellins, gene expression analysis, and hormone quantification in sl flowers revealed a role of phytohormones in flower development downstream of the SL gene. Together, our results indicated that petal and stamen identity in tomato depends on gene-hormone interactions, as mediated by the SL gene.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Silenciador del Gen , Solanum lycopersicum/química , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Transcripción Genética
13.
Nat Commun ; 15(1): 3875, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719800

RESUMEN

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Asunto(s)
Citocininas , Ácidos Indolacéticos , Filogenia , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Viridiplantae/metabolismo , Viridiplantae/genética , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Ciclopentanos/metabolismo , Evolución Biológica , Chlorophyta/metabolismo , Chlorophyta/genética , Transducción de Señal
14.
J Exp Bot ; 64(10): 2805-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23669573

RESUMEN

Responses to drought, heat, and combined stress were compared in tobacco (Nicotiana tabacum L.) plants ectopically expressing the cytokinin oxidase/dehydrogenase CKX1 gene of Arabidopsis thaliana L. under the control of either the predominantly root-expressed WRKY6 promoter or the constitutive 35S promoter, and in the wild type. WRKY6:CKX1 plants exhibited high CKX activity in the roots under control conditions. Under stress, the activity of the WRKY6 promoter was down-regulated and the concomitantly reduced cytokinin degradation coincided with raised bioactive cytokinin levels during the early phase of the stress response, which might contribute to enhanced stress tolerance of this genotype. Constitutive expression of CKX1 resulted in an enlarged root system, a stunted, dwarf shoot phenotype, and a low basal level of expression of the dehydration marker gene ERD10B. The high drought tolerance of this genotype was associated with a relatively moderate drop in leaf water potential and a significant decrease in leaf osmotic potential. Basal expression of the proline biosynthetic gene P5CSA was raised. Both wild-type and WRKY6:CKX1 plants responded to heat stress by transient elevation of stomatal conductance, which correlated with an enhanced abscisic acid catabolism. 35S:CKX1 transgenic plants exhibited a small and delayed stomatal response. Nevertheless, they maintained a lower leaf temperature than the other genotypes. Heat shock applied to drought-stressed plants exaggerated the negative stress effects, probably due to the additional water loss caused by a transient stimulation of transpiration. The results indicate that modulation of cytokinin levels may positively affect plant responses to abiotic stress through a variety of physiological mechanisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Nicotiana/fisiología , Oxidorreductasas/genética , Plantas Modificadas Genéticamente/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Sequías , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Calor , Oxidorreductasas/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Nicotiana/química , Nicotiana/genética
15.
Plant Physiol Biochem ; 196: 186-196, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36724703

RESUMEN

The non-climacteric octoploid strawberry (Fragaria × ananassa Duchesne ex Rozier) was used as a model to study its regulation during fruit ripening. High performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS) was employed to profile 28 different endogenous phytohormones in strawberry. These include auxins, cytokinins (CKs), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonates, and phenolic compounds salicylic acid (SA), benzoic acid (BzA) and phenylacetic acid (PAA) together with their various metabolic forms that have remained largely unexplored thus far. ABA, ACC and CK N6-(Δ2-isopentenyl)adenine (iP) were found to be associated with ripening while ABA catabolites 9-hydroxy-ABA and phaseic acid mimicked the pattern of climacteric decline at the turning phase of strawberry ripening. The content of other CK forms except iP decreased as fruit ripened, as also that of auxins indole-3-acetic acid (IAA) and oxo-IAA, and of jasmonates. Data presented here also suggest that both the transition and progression of strawberry fruit ripening are associated with N6-(Δ2-isopentenyl)adenosine-5'-monophosphate (iPRMP) → N6-(Δ2-isopentenyl)adenosine (iPR) → iP as the preferred CK metabolic pathway. In contrast, the ethylene precursor ACC was present at higher levels, with its abundance increasing from the onset of ripening to the red ripe stage. Further investigation of ripening-specific ACC accumulation revealed the presence of a large ACC synthase (ACS) encoding gene family in octoploid strawberry that was previously unknown. Seventeen ACS genes were found differentially expressed in fruit tissues, while six of them showed induced expression during strawberry fruit ripening. These data suggest a possible role(s) of ACC, ABA, and iP in strawberry fruit ripening. These data add new dimension to the existing knowledge of the interplay of different endogenous phytohormones in octoploid strawberry, paving the way for further investigation of their individual role(s) in fruit ripening.


Asunto(s)
Fragaria , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Isopenteniladenosina/metabolismo , Frutas/metabolismo , Espectrometría de Masas en Tándem , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
Plants (Basel) ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986945

RESUMEN

In a pot experiment, cherry radish (Raphanus sativus var. sativus Pers. 'Viola') was cultivated under two levels of As soil contamination-20 and 100 mg/kg. The increasing As content in tubers with increasing soil contamination led to changes in free amino acids (AAs) and phytohormone metabolism and antioxidative metabolites. Changes were mainly observed under conditions of high As contamination (As100). The content of indole-3-acetic acid in tubers varied under different levels of As stress, but As100 contamination led to an increase in its bacterial precursor indole-3-acetamide. A decrease in cis-zeatin-9-riboside-5'-monophosphate content and an increase in jasmonic acid content were found in this treatment. The free AA content in tubers was also reduced. The main free AAs were determined to be transport AAs (glutamate-Glu, aspartate, glutamine-Gln, asparagine) with the main portion being Gln. The Glu/Gln ratio-a significant indicator of primary N assimilation in plants-decreased under the As100 treatment condition. A decrease in antioxidative metabolite content-namely that of ascorbic acid and anthocyanins-was observed in this experiment. A decline in anthocyanin content is related to a decrease in aromatic AA content which is crucial for secondary metabolite production. The changes in tubers caused by As contamination were reflected in anatomical changes in the radish tubers and roots.

17.
Front Plant Sci ; 14: 1296520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38362121

RESUMEN

Cytokinin (CK) is a plant hormone that plays crucial roles in regulating plant growth and development. CK-deficient plants are widely used as model systems for investigating the numerous physiological roles of CK. Since it was previously shown that transgenic or mutant CK-deficient Arabidopsis and Centaurium plants show superior tolerance to salinity, we examined the tolerance of three CK-deficient potato lines overexpressing the Arabidopsis thaliana CYTOKININ OXIDASE/DEHYDROGENASE2 (AtCKX2) gene to 50 mM, 100 mM, 150 mM, and 200 mM NaCl applied in vitro. Quantification of visible salinity injury, rooting and acclimatization efficiency, shoot growth, water saturation deficit, and chlorophyll content confirmed that the CK-deficient potato plants were more tolerant to low (50 mM) and moderate (100 mM) NaCl concentrations, but exhibited increased sensitivity to severe salinity stress (150 and 200 mM NaCl) compared to non-transformed control plants. These findings were corroborated by the data distribution patterns according to principal component analysis. Quantification of the activity of superoxide dismutases, peroxidases, and catalases revealed an impaired ability of AtCKX2-transgenic lines to upregulate the activity of antioxidant enzymes in response to salinity, which might contribute to the enhanced sensitivity of these potato lines to severe salt stress. Our results add complexity to the existing knowledge on the regulation of salinity tolerance by CK, as we show for the first time that CK-deficient plants can exhibit reduced rather than increased tolerance to severe salt stress.

18.
Metabolites ; 13(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887424

RESUMEN

Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-ß,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.

19.
Mol Plant Microbe Interact ; 25(8): 1073-82, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22746825

RESUMEN

When inoculated onto maize leaves at the onset of senescence, the hemibiotroph Colletotrichum graminicola causes green islands that are surrounded by senescing tissue. Taking advantage of green islands as indicators of sites of the establishment of successful infection and of advanced high-performance liquid chromatography tandem mass spectrometry methodology, we analyzed changes in the patterns and levels of cytokinins (CK) at high spatial and analytical resolution. Twenty individual CK were detected in green islands. Levels of cis-zeatin-9-riboside and cis-zeatin-9-riboside-5'-monophosphate increased drastically, whereas that of the most prominent CK, cis-zeatin-O-glucoside, decreased. The fungus likely performed these conversions because corresponding activities were also detected in in vitro cultures amended with CK. We found no evidence that C. graminicola is able to synthesize CK entirely de novo in minimal medium but, after adding dimethylallyl diphosphate, a precursor of CK biosynthesis occurring in plants, a series of trans-zeatin isoforms (i.e., trans-zeatin-9-riboside-5'-monophosphate, trans-zeatin-9-riboside, and trans-zeatin) was formed. After applying CK onto uninfected leaves, transcripts of marker genes for senescence, photosynthesis, and assimilate distribution were measured by quantitative reverse-transcribed polymerase chain reaction; furthermore, pulse-amplitude modulation chlorophyll fluorometry and single-photon avalanche diode analyses were conducted. These experiments suggested that modulation of CK metabolism at the infection site affects host physiology.


Asunto(s)
Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Citocininas/metabolismo , Hojas de la Planta/microbiología , Zea mays/metabolismo , Zea mays/microbiología , Clorofila/metabolismo , Cromatografía Líquida de Alta Presión , Medios de Cultivo , Citocininas/análisis , Regulación de la Expresión Génica de las Plantas , Hemiterpenos/metabolismo , Interacciones Huésped-Patógeno , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Compuestos Organofosforados/metabolismo , Fotosíntesis , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Nucleótidos de Purina/metabolismo , Espectrometría de Masas en Tándem , Zea mays/genética
20.
Plants (Basel) ; 11(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956460

RESUMEN

This study presents the hypocotyl elongation of sunflower seedlings germinated under different light conditions. Elongation was rhythmic under diurnal (LD) photoperiods but uniform (arrhythmic) under free-running conditions of white light (LL) or darkness (DD). On the sixth day after the onset of germination, seedlings were entrained in all diurnal photoperiods. Their hypocotyl elongation was dual, showing different kinetics in daytime and nighttime periods. The daytime elongation peak was around midday and 1-2 h after dusk in the nighttime. Plantlets compensated for the differences in the daytime and nighttime durations and exhibited similar overall elongation rates, centered around the uniform elongation in LL conditions. Thus, plants from diurnal photoperiods and LL could be grouped together as white-light treatments that suppressed hypocotyl elongation. Hypocotyl elongation was significantly higher under DD than under white-light photoperiods. In continuous monochromatic blue, yellow, green, or red light, hypocotyl elongation was also uniform and very high. The treatments with monochromatic light and DD had similar overall elongation rates; thus, they could be grouped together. Compared with white light, monochromatic light promoted hypocotyl elongation. Suppression of hypocotyl elongation and rhythmicity reappeared in some combination with two or more monochromatic light colors. The presence of red light was obligatory for this suppression. Plantlets entrained in diurnal photoperiods readily slipped from rhythmic into uniform elongation if they encountered any kind of free-running conditions. These transitions occurred whenever the anticipated duration of daytime or nighttime was extended more than expected, or when plantlets were exposed to constant monochromatic light. This study revealed significant differences in the development of sunflower plantlets illuminated with monochromatic or white light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA